Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4444

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4444

deactivated ARFF Publicly available Visibility: public Uploaded 15-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4444 (TID: 12847), and it has 215 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric92 unique values
0 missing
molecule_id (row identifier)nominal215 unique values
0 missing
SsClnumeric75 unique values
0 missing
ATSC8snumeric209 unique values
0 missing
Cl.089numeric3 unique values
0 missing
nCLnumeric3 unique values
0 missing
NsClnumeric3 unique values
0 missing
P_VSA_e_4numeric3 unique values
0 missing
P_VSA_LogP_8numeric8 unique values
0 missing
P_VSA_m_4numeric18 unique values
0 missing
ATSC5snumeric209 unique values
0 missing
Eig02_EA.dm.numeric48 unique values
0 missing
GATS7snumeric186 unique values
0 missing
Mpnumeric85 unique values
0 missing
SM11_AEA.ed.numeric154 unique values
0 missing
SM12_AEA.ed.numeric156 unique values
0 missing
SM13_AEA.ed.numeric158 unique values
0 missing
SM14_AEA.ed.numeric154 unique values
0 missing
SM15_AEA.ed.numeric154 unique values
0 missing
GATS5mnumeric172 unique values
0 missing
ATSC7snumeric209 unique values
0 missing
GGI3numeric92 unique values
0 missing
CATS2D_04_DDnumeric3 unique values
0 missing
ATSC8enumeric188 unique values
0 missing
SM07_EA.ed.numeric156 unique values
0 missing
SM08_EA.ed.numeric155 unique values
0 missing
SM09_EA.ed.numeric155 unique values
0 missing
SM10_AEA.ed.numeric149 unique values
0 missing
SM10_EA.ed.numeric158 unique values
0 missing
SM09_EA.ri.numeric189 unique values
0 missing
SM10_EA.ri.numeric188 unique values
0 missing
SM13_EAnumeric158 unique values
0 missing
SM14_EAnumeric156 unique values
0 missing
SM15_EAnumeric157 unique values
0 missing
SM11_EA.ri.numeric188 unique values
0 missing
SM12_EA.ri.numeric189 unique values
0 missing
SM09_EAnumeric148 unique values
0 missing
GATS7enumeric186 unique values
0 missing
SM13_EA.ri.numeric191 unique values
0 missing
SM12_EA.ed.numeric149 unique values
0 missing
SM13_EA.ed.numeric144 unique values
0 missing
ATS8snumeric197 unique values
0 missing
SsssCHnumeric101 unique values
0 missing
SM10_EAnumeric156 unique values
0 missing
GATS7mnumeric173 unique values
0 missing
SM05_EA.ed.numeric147 unique values
0 missing
SM06_EA.ed.numeric155 unique values
0 missing
SM05_EA.ri.numeric171 unique values
0 missing
SM07_EA.ri.numeric189 unique values
0 missing
SM08_EA.ri.numeric184 unique values
0 missing
Eig01_EA.dm.numeric54 unique values
0 missing
SpMax_EA.dm.numeric54 unique values
0 missing
SM09_AEA.ed.numeric153 unique values
0 missing
CATS2D_06_DDnumeric5 unique values
0 missing
SM07_AEA.ed.numeric153 unique values
0 missing
SM11_EAnumeric154 unique values
0 missing
SM12_EAnumeric159 unique values
0 missing
SpMax4_Bh.s.numeric58 unique values
0 missing
Eig04_EA.ri.numeric127 unique values
0 missing
Eta_alpha_Anumeric41 unique values
0 missing
SM11_EA.ed.numeric154 unique values
0 missing
SM14_EA.ri.numeric191 unique values
0 missing
SM15_EA.ri.numeric188 unique values
0 missing
SM03_EA.dm.numeric46 unique values
0 missing
Eig03_EA.ri.numeric143 unique values
0 missing
GATS2pnumeric160 unique values
0 missing
Eig04_AEA.dm.numeric122 unique values
0 missing

62 properties

215
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.83
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.96
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
17.45
Mean of means among attributes of the numeric type.
0.02
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.42
First quartile of standard deviation of attributes of the numeric type.
0.55
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
-0.68
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.31
Number of attributes divided by the number of instances.
0.48
Mean skewness among attributes of the numeric type.
12.69
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
6.09
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.25
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
-1.51
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.6
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
57.24
Maximum kurtosis among attributes of the numeric type.
-0.82
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
149.07
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.95
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.51
Percentage of numeric attributes.
20.66
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-6.66
Minimum skewness among attributes of the numeric type.
1.49
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
3.88
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.86
Third quartile of skewness among attributes of the numeric type.
95.97
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.83
First quartile of kurtosis among attributes of the numeric type.
0.87
Third quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task