Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3268

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3268

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3268 (TID: 11941), and it has 199 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric91 unique values
0 missing
molecule_id (row identifier)nominal199 unique values
0 missing
CATS2D_04_APnumeric5 unique values
0 missing
CATS2D_02_PLnumeric3 unique values
0 missing
SsNH2numeric104 unique values
0 missing
CATS2D_06_PLnumeric6 unique values
0 missing
CATS2D_04_DAnumeric6 unique values
0 missing
N.069numeric3 unique values
0 missing
nArNH2numeric3 unique values
0 missing
CATS2D_02_APnumeric4 unique values
0 missing
CATS2D_00_DDnumeric3 unique values
0 missing
CATS2D_00_DPnumeric3 unique values
0 missing
CATS2D_00_PPnumeric3 unique values
0 missing
NsNH2numeric3 unique values
0 missing
CATS2D_05_PLnumeric5 unique values
0 missing
SaaNnumeric176 unique values
0 missing
CATS2D_04_PLnumeric5 unique values
0 missing
SpMax5_Bh.p.numeric159 unique values
0 missing
N.075numeric6 unique values
0 missing
NaaNnumeric6 unique values
0 missing
HVcpxnumeric152 unique values
0 missing
Eig05_AEA.dm.numeric160 unique values
0 missing
P_VSA_p_3numeric174 unique values
0 missing
P_VSA_v_3numeric174 unique values
0 missing
IDEnumeric151 unique values
0 missing
AECCnumeric141 unique values
0 missing
Eig04_AEA.dm.numeric159 unique values
0 missing
Eig06_AEA.bo.numeric133 unique values
0 missing
GGI10numeric93 unique values
0 missing
ICRnumeric130 unique values
0 missing
SpAD_EA.dm.numeric93 unique values
0 missing
DECCnumeric136 unique values
0 missing
MSDnumeric159 unique values
0 missing
nPyrazolesnumeric2 unique values
0 missing
Eig03_AEA.dm.numeric168 unique values
0 missing
SpMax7_Bh.p.numeric126 unique values
0 missing
S2Knumeric161 unique values
0 missing
SpMax6_Bh.m.numeric154 unique values
0 missing
S3Knumeric170 unique values
0 missing
SM12_EA.bo.numeric149 unique values
0 missing
SM13_EA.bo.numeric148 unique values
0 missing
SM14_EA.bo.numeric145 unique values
0 missing
SM15_EA.bo.numeric145 unique values
0 missing
ATSC4pnumeric189 unique values
0 missing
Eig06_EAnumeric138 unique values
0 missing
SM14_AEA.bo.numeric138 unique values
0 missing
AMRnumeric176 unique values
0 missing
Chi1_EA.dm.numeric147 unique values
0 missing
N.numeric81 unique values
0 missing
SMTIVnumeric186 unique values
0 missing
CSInumeric151 unique values
0 missing
Yindexnumeric144 unique values
0 missing
Eig06_AEA.ri.numeric152 unique values
0 missing
MDDDnumeric161 unique values
0 missing
SpMaxA_EA.bo.numeric85 unique values
0 missing
SpMax4_Bh.m.numeric170 unique values
0 missing
Vindexnumeric109 unique values
0 missing
ECCnumeric133 unique values
0 missing
PHInumeric161 unique values
0 missing
Eig07_AEA.dm.numeric158 unique values
0 missing
Eig06_AEA.dm.numeric153 unique values
0 missing
SpMax7_Bh.m.numeric152 unique values
0 missing
SpMax5_Bh.v.numeric172 unique values
0 missing
Eig08_AEA.dm.numeric164 unique values
0 missing
SpMax5_Bh.m.numeric173 unique values
0 missing
GMTIVnumeric185 unique values
0 missing
C.030numeric3 unique values
0 missing
SpMaxA_EA.ed.numeric113 unique values
0 missing

62 properties

199
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.18
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.15
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
703.33
Mean of means among attributes of the numeric type.
-0.01
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.33
First quartile of standard deviation of attributes of the numeric type.
0.36
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
-0.28
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.34
Number of attributes divided by the number of instances.
0.46
Mean skewness among attributes of the numeric type.
2.9
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
562.69
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.65
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
-1.85
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.59
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
4.41
Maximum kurtosis among attributes of the numeric type.
0.1
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
29041.99
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.7
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.53
Percentage of numeric attributes.
9
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-0.81
Minimum skewness among attributes of the numeric type.
1.47
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
1.95
Maximum skewness among attributes of the numeric type.
0.04
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.03
Third quartile of skewness among attributes of the numeric type.
23786.81
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.78
First quartile of kurtosis among attributes of the numeric type.
1.87
Third quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task