Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL221

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL221

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL221 (TID: 96), and it has 2042 rows and 70 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

72 features

pXC50 (target)numeric663 unique values
0 missing
molecule_id (row identifier)nominal2042 unique values
0 missing
P_VSA_s_1numeric9 unique values
0 missing
nS..O.2numeric3 unique values
0 missing
SpMax2_Bh.i.numeric314 unique values
0 missing
Eig01_AEA.bo.numeric370 unique values
0 missing
SpMax_AEA.bo.numeric370 unique values
0 missing
Eig02_EA.bo.numeric683 unique values
0 missing
SM12_AEA.ri.numeric683 unique values
0 missing
GATS2mnumeric546 unique values
0 missing
SpMax4_Bh.v.numeric654 unique values
0 missing
SpDiam_EA.bo.numeric407 unique values
0 missing
SpMax4_Bh.p.numeric676 unique values
0 missing
JGI4numeric59 unique values
0 missing
SpMin1_Bh.i.numeric207 unique values
0 missing
Eig02_AEA.ed.numeric561 unique values
0 missing
GATS6snumeric951 unique values
0 missing
C.016numeric9 unique values
0 missing
MATS1mnumeric317 unique values
0 missing
SpMax3_Bh.e.numeric471 unique values
0 missing
Eig01_EA.bo.numeric399 unique values
0 missing
SM11_AEA.ri.numeric399 unique values
0 missing
SpMax_EA.bo.numeric399 unique values
0 missing
SM05_EA.dm.numeric115 unique values
0 missing
D.Dtr05numeric656 unique values
0 missing
SM06_EA.dm.numeric344 unique values
0 missing
SM08_EA.dm.numeric309 unique values
0 missing
SM10_EA.dm.numeric289 unique values
0 missing
SpMax2_Bh.v.numeric380 unique values
0 missing
SM04_EA.dm.numeric396 unique values
0 missing
SpMax3_Bh.p.numeric547 unique values
0 missing
SM06_EA.bo.numeric799 unique values
0 missing
S.110numeric3 unique values
0 missing
NddssSnumeric3 unique values
0 missing
SM07_EA.dm.numeric125 unique values
0 missing
SM09_EA.dm.numeric124 unique values
0 missing
NdsCHnumeric9 unique values
0 missing
Eig02_EA.ed.numeric671 unique values
0 missing
SM11_AEA.dm.numeric671 unique values
0 missing
SM15_EA.bo.numeric861 unique values
0 missing
Eig01_AEA.dm.numeric397 unique values
0 missing
SpDiam_AEA.dm.numeric398 unique values
0 missing
SpMax_AEA.dm.numeric397 unique values
0 missing
SpMax1_Bh.m.numeric330 unique values
0 missing
Eig11_EA.bo.numeric815 unique values
0 missing
P_VSA_p_2numeric513 unique values
0 missing
SM02_EA.dm.numeric376 unique values
0 missing
SM03_EA.dm.numeric79 unique values
0 missing
SM14_EA.bo.numeric877 unique values
0 missing
SpMax3_Bh.i.numeric476 unique values
0 missing
GATS3snumeric723 unique values
0 missing
SM13_EA.dm.numeric123 unique values
0 missing
SpMax2_Bh.e.numeric361 unique values
0 missing
MATS3snumeric402 unique values
0 missing
SpMax3_Bh.m.numeric597 unique values
0 missing
SM11_EA.dm.numeric123 unique values
0 missing
SM15_EA.dm.numeric120 unique values
0 missing
SddssSnumeric604 unique values
0 missing
SdOnumeric1489 unique values
0 missing
SM13_EA.bo.numeric888 unique values
0 missing
SpMin4_Bh.e.numeric616 unique values
0 missing
SpMin2_Bh.i.numeric335 unique values
0 missing
SpDiam_EA.ed.numeric744 unique values
0 missing
MATS3inumeric457 unique values
0 missing
CATS2D_05_DLnumeric14 unique values
0 missing
nPyrrolidinesnumeric2 unique values
0 missing
MATS2mnumeric417 unique values
0 missing
Rperimnumeric37 unique values
0 missing
SM07_EA.bo.numeric825 unique values
0 missing
SpMax2_Bh.m.numeric567 unique values
0 missing
Eig01_AEA.ri.numeric478 unique values
0 missing
SpMax_AEA.ri.numeric478 unique values
0 missing

62 properties

2042
Number of instances (rows) of the dataset.
72
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
71
Number of numeric attributes.
1
Number of nominal attributes.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.25
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
6.4
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
7.08
Mean of means among attributes of the numeric type.
-1.26
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.19
First quartile of standard deviation of attributes of the numeric type.
0.19
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
1.54
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.04
Number of attributes divided by the number of instances.
0.16
Mean skewness among attributes of the numeric type.
4
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
3.66
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.51
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
-1.37
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.51
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
93.67
Maximum kurtosis among attributes of the numeric type.
-2.28
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
102.45
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
4.63
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.61
Percentage of numeric attributes.
6.61
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.09
Minimum skewness among attributes of the numeric type.
1.39
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
9.05
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.67
Third quartile of skewness among attributes of the numeric type.
118.11
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.5
First quartile of kurtosis among attributes of the numeric type.
1.62
Third quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task