Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3959

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3959

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3959 (TID: 10170), and it has 233 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric191 unique values
0 missing
molecule_id (row identifier)nominal233 unique values
0 missing
SssCH2numeric135 unique values
0 missing
NssCH2numeric10 unique values
0 missing
C.006numeric6 unique values
0 missing
IC2numeric179 unique values
0 missing
CATS2D_06_DLnumeric8 unique values
0 missing
IC3numeric151 unique values
0 missing
ATS7mnumeric210 unique values
0 missing
CATS2D_07_DLnumeric8 unique values
0 missing
IC4numeric141 unique values
0 missing
SpMax3_Bh.e.numeric173 unique values
0 missing
CATS2D_05_DLnumeric7 unique values
0 missing
CATS2D_04_DLnumeric9 unique values
0 missing
Hynumeric134 unique values
0 missing
P_VSA_LogP_2numeric52 unique values
0 missing
JGI9numeric21 unique values
0 missing
GGI9numeric87 unique values
0 missing
CATS2D_03_DLnumeric9 unique values
0 missing
RBFnumeric74 unique values
0 missing
TIC1numeric188 unique values
0 missing
H.050numeric7 unique values
0 missing
nHDonnumeric7 unique values
0 missing
SAdonnumeric27 unique values
0 missing
ICRnumeric142 unique values
0 missing
SpMin1_Bh.s.numeric130 unique values
0 missing
SpMin4_Bh.e.numeric172 unique values
0 missing
DECCnumeric159 unique values
0 missing
SpMax3_Bh.v.numeric161 unique values
0 missing
BIC3numeric110 unique values
0 missing
MSDnumeric194 unique values
0 missing
SpMax3_Bh.m.numeric173 unique values
0 missing
SpMax4_Bh.m.numeric172 unique values
0 missing
NssNHnumeric4 unique values
0 missing
SssNHnumeric130 unique values
0 missing
LOCnumeric136 unique values
0 missing
TIC2numeric191 unique values
0 missing
SaaaCnumeric147 unique values
0 missing
RBNnumeric11 unique values
0 missing
ATS3inumeric186 unique values
0 missing
ATS8mnumeric208 unique values
0 missing
GGI7numeric127 unique values
0 missing
MDDDnumeric193 unique values
0 missing
IC1numeric173 unique values
0 missing
ATSC2inumeric176 unique values
0 missing
GGI8numeric106 unique values
0 missing
IDEnumeric185 unique values
0 missing
TIC4numeric154 unique values
0 missing
SIC3numeric115 unique values
0 missing
H.052numeric11 unique values
0 missing
TIC3numeric168 unique values
0 missing
ATSC3mnumeric220 unique values
0 missing
AECCnumeric171 unique values
0 missing
DBInumeric32 unique values
0 missing
VARnumeric93 unique values
0 missing
SpMin3_Bh.s.numeric143 unique values
0 missing
CATS2D_02_DLnumeric11 unique values
0 missing
HVcpxnumeric176 unique values
0 missing
AMRnumeric201 unique values
0 missing
TIC5numeric153 unique values
0 missing
SpMax6_Bh.m.numeric186 unique values
0 missing
X0vnumeric194 unique values
0 missing
ATS8snumeric209 unique values
0 missing
ATSC3inumeric192 unique values
0 missing
ATSC1inumeric161 unique values
0 missing
CENTnumeric179 unique values
0 missing
X1vnumeric207 unique values
0 missing
Eig04_EAnumeric158 unique values
0 missing

62 properties

233
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.27
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.72
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
28.96
Mean of means among attributes of the numeric type.
-0.12
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.26
First quartile of standard deviation of attributes of the numeric type.
0.1
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
0.71
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.29
Number of attributes divided by the number of instances.
0.47
Mean skewness among attributes of the numeric type.
2.87
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
13.8
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.52
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
-0.96
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.86
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
14.22
Maximum kurtosis among attributes of the numeric type.
-0.03
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
709.45
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
2.12
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.53
Percentage of numeric attributes.
5.23
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.45
Minimum skewness among attributes of the numeric type.
1.47
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.83
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.02
Third quartile of skewness among attributes of the numeric type.
523.16
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.02
First quartile of kurtosis among attributes of the numeric type.
1.94
Third quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task