Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4223

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4223

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4223 (TID: 30012), and it has 559 rows and 68 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

70 features

pXC50 (target)numeric83 unique values
0 missing
molecule_id (row identifier)nominal559 unique values
0 missing
CATS2D_08_DPnumeric4 unique values
0 missing
DECCnumeric414 unique values
0 missing
Yindexnumeric330 unique values
0 missing
Chi0_EA.dm.numeric489 unique values
0 missing
Eta_betaPnumeric46 unique values
0 missing
Xindexnumeric222 unique values
0 missing
CATS2D_08_DDnumeric3 unique values
0 missing
Eig07_AEA.bo.numeric390 unique values
0 missing
IDEnumeric420 unique values
0 missing
AECCnumeric434 unique values
0 missing
Eig08_EA.bo.numeric398 unique values
0 missing
SpMax6_Bh.m.numeric386 unique values
0 missing
MSDnumeric488 unique values
0 missing
Vindexnumeric187 unique values
0 missing
Eig06_EAnumeric376 unique values
0 missing
SM14_AEA.bo.numeric376 unique values
0 missing
Eig07_EA.bo.numeric396 unique values
0 missing
Eig10_EA.ed.numeric417 unique values
0 missing
SM05_AEA.ri.numeric417 unique values
0 missing
SpMax4_Bh.m.numeric383 unique values
0 missing
UNIPnumeric170 unique values
0 missing
X2solnumeric492 unique values
0 missing
Chi1_EA.dm.numeric497 unique values
0 missing
CATS2D_04_PLnumeric6 unique values
0 missing
Eta_betanumeric134 unique values
0 missing
SMTIVnumeric536 unique values
0 missing
Eig06_EA.bo.numeric410 unique values
0 missing
Eig09_AEA.dm.numeric408 unique values
0 missing
SpMax3_Bh.i.numeric291 unique values
0 missing
Eig07_EAnumeric377 unique values
0 missing
SM15_AEA.bo.numeric377 unique values
0 missing
Eig09_EAnumeric352 unique values
0 missing
SM03_AEA.dm.numeric352 unique values
0 missing
SpMax3_Bh.m.numeric301 unique values
0 missing
CATS2D_05_DLnumeric15 unique values
0 missing
SpMin3_Bh.v.numeric287 unique values
0 missing
Eig07_AEA.ri.numeric431 unique values
0 missing
Eig09_AEA.ri.numeric386 unique values
0 missing
Eig10_AEA.bo.numeric362 unique values
0 missing
HVcpxnumeric407 unique values
0 missing
SpMin3_Bh.p.numeric283 unique values
0 missing
ATS1mnumeric380 unique values
0 missing
X4solnumeric494 unique values
0 missing
SssNHnumeric382 unique values
0 missing
Eig10_EA.bo.numeric380 unique values
0 missing
SpMax4_Bh.i.numeric377 unique values
0 missing
XMODnumeric532 unique values
0 missing
Eig10_AEA.ed.numeric372 unique values
0 missing
Eig10_AEA.ri.numeric397 unique values
0 missing
MWnumeric497 unique values
0 missing
CATS2D_04_DLnumeric14 unique values
0 missing
P_VSA_s_3numeric497 unique values
0 missing
Eig10_EAnumeric357 unique values
0 missing
SM04_AEA.dm.numeric357 unique values
0 missing
CATS2D_02_DAnumeric7 unique values
0 missing
Eig07_EA.ed.numeric463 unique values
0 missing
SM02_AEA.ri.numeric463 unique values
0 missing
CSInumeric399 unique values
0 missing
NssNHnumeric5 unique values
0 missing
Eig06_AEA.ri.numeric427 unique values
0 missing
Eig06_AEA.bo.numeric391 unique values
0 missing
Eig08_EA.ed.numeric439 unique values
0 missing
SM03_AEA.ri.numeric439 unique values
0 missing
Wapnumeric486 unique values
0 missing
IDMTnumeric511 unique values
0 missing
TPCnumeric432 unique values
0 missing
RDCHInumeric448 unique values
0 missing
Eig06_EA.ed.numeric470 unique values
0 missing

62 properties

559
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
69
Number of numeric attributes.
1
Number of nominal attributes.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.84
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
2.97
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
1110.68
Mean of means among attributes of the numeric type.
-0.62
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.35
First quartile of standard deviation of attributes of the numeric type.
0.17
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
0.56
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.13
Number of attributes divided by the number of instances.
0.14
Mean skewness among attributes of the numeric type.
3.23
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
1671.35
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.06
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
-0.65
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.58
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
139.17
Maximum kurtosis among attributes of the numeric type.
0.15
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
37242.55
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.79
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.57
Percentage of numeric attributes.
6.31
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.66
Minimum skewness among attributes of the numeric type.
1.43
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
10.75
Maximum skewness among attributes of the numeric type.
0.05
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.68
Third quartile of skewness among attributes of the numeric type.
89998.64
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.08
First quartile of kurtosis among attributes of the numeric type.
2.35
Third quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task