Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3156

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3156

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3156 (TID: 12480), and it has 156 rows and 62 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

64 features

pXC50 (target)numeric95 unique values
0 missing
molecule_id (row identifier)nominal156 unique values
0 missing
SsCH3numeric70 unique values
0 missing
D.Dtr10numeric30 unique values
0 missing
nR10numeric2 unique values
0 missing
NsCH3numeric5 unique values
0 missing
P_VSA_LogP_1numeric10 unique values
0 missing
nRCOOHnumeric2 unique values
0 missing
SM03_EA.dm.numeric17 unique values
0 missing
SM05_EA.dm.numeric21 unique values
0 missing
SM07_EA.dm.numeric24 unique values
0 missing
SM09_EA.dm.numeric22 unique values
0 missing
SM11_EA.dm.numeric22 unique values
0 missing
SM13_EA.dm.numeric22 unique values
0 missing
SM15_EA.dm.numeric22 unique values
0 missing
MATS6snumeric121 unique values
0 missing
GATS6snumeric134 unique values
0 missing
MATS4inumeric103 unique values
0 missing
nCarnumeric13 unique values
0 missing
Eig01_EA.dm.numeric18 unique values
0 missing
SM04_EA.dm.numeric44 unique values
0 missing
SM06_EA.dm.numeric43 unique values
0 missing
SM08_EA.dm.numeric36 unique values
0 missing
SM10_EA.dm.numeric33 unique values
0 missing
SM12_EA.dm.numeric33 unique values
0 missing
SM14_EA.dm.numeric31 unique values
0 missing
SpDiam_EA.dm.numeric20 unique values
0 missing
SpMax_EA.dm.numeric18 unique values
0 missing
MATS2vnumeric94 unique values
0 missing
CATS2D_03_ALnumeric13 unique values
0 missing
CATS2D_03_NLnumeric4 unique values
0 missing
Eig04_AEA.ed.numeric69 unique values
0 missing
GATS8inumeric132 unique values
0 missing
MATS8inumeric119 unique values
0 missing
Eig08_EA.bo.numeric83 unique values
0 missing
SpMin3_Bh.p.numeric83 unique values
0 missing
BACnumeric40 unique values
0 missing
DECCnumeric111 unique values
0 missing
NaaCHnumeric13 unique values
0 missing
Eig07_AEA.ed.numeric77 unique values
0 missing
LOCnumeric87 unique values
0 missing
GGI3numeric58 unique values
0 missing
GGI4numeric86 unique values
0 missing
P_VSA_MR_6numeric78 unique values
0 missing
SssNHnumeric98 unique values
0 missing
MATS4pnumeric103 unique values
0 missing
ATSC2vnumeric120 unique values
0 missing
ATSC3vnumeric139 unique values
0 missing
H.052numeric10 unique values
0 missing
SpMin7_Bh.s.numeric103 unique values
0 missing
Eig05_EA.ri.numeric95 unique values
0 missing
ICRnumeric104 unique values
0 missing
Eta_sh_pnumeric88 unique values
0 missing
ATS4inumeric126 unique values
0 missing
ATS7enumeric143 unique values
0 missing
ATS7inumeric139 unique values
0 missing
ATS8enumeric136 unique values
0 missing
ATSC7vnumeric146 unique values
0 missing
SpMin5_Bh.m.numeric98 unique values
0 missing
SpMin5_Bh.v.numeric101 unique values
0 missing
SpMin6_Bh.e.numeric96 unique values
0 missing
SpMin6_Bh.i.numeric93 unique values
0 missing
SpMin6_Bh.m.numeric86 unique values
0 missing
SpMin6_Bh.p.numeric102 unique values
0 missing

62 properties

156
Number of instances (rows) of the dataset.
64
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
63
Number of numeric attributes.
1
Number of nominal attributes.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.35
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.76
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
6.65
Mean of means among attributes of the numeric type.
-1.05
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.21
First quartile of standard deviation of attributes of the numeric type.
-0.47
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
0.67
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.41
Number of attributes divided by the number of instances.
-0.29
Mean skewness among attributes of the numeric type.
3.1
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
3.03
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.51
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
-1.24
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.47
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
4.33
Maximum kurtosis among attributes of the numeric type.
-0.06
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
95.48
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.55
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.44
Percentage of numeric attributes.
7.27
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.62
Minimum skewness among attributes of the numeric type.
1.56
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
1.86
Maximum skewness among attributes of the numeric type.
0.06
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.44
Third quartile of skewness among attributes of the numeric type.
59.32
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.42
First quartile of kurtosis among attributes of the numeric type.
2.73
Third quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task