Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2068

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2068

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2068 (TID: 30008), and it has 837 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric113 unique values
0 missing
molecule_id (row identifier)nominal837 unique values
0 missing
CATS2D_08_DPnumeric7 unique values
0 missing
DECCnumeric569 unique values
0 missing
CATS2D_05_DLnumeric25 unique values
0 missing
AECCnumeric614 unique values
0 missing
Xindexnumeric270 unique values
0 missing
Eta_beta_Anumeric316 unique values
0 missing
PDInumeric198 unique values
0 missing
D.Dtr06numeric747 unique values
0 missing
Chi1_EA.dm.numeric719 unique values
0 missing
IDEnumeric565 unique values
0 missing
Eta_betaP_Anumeric287 unique values
0 missing
Chi0_EA.dm.numeric711 unique values
0 missing
CATS2D_02_DAnumeric15 unique values
0 missing
Eig03_EA.bo.numeric471 unique values
0 missing
SM13_AEA.ri.numeric471 unique values
0 missing
CATS2D_08_DDnumeric10 unique values
0 missing
Eig09_AEA.dm.numeric554 unique values
0 missing
MSDnumeric696 unique values
0 missing
Eig08_EA.bo.numeric543 unique values
0 missing
Eig08_AEA.ri.numeric550 unique values
0 missing
ATS2mnumeric542 unique values
0 missing
SssNHnumeric544 unique values
0 missing
UNIPnumeric216 unique values
0 missing
Eig08_AEA.bo.numeric503 unique values
0 missing
Yindexnumeric422 unique values
0 missing
Eig11_EA.ed.numeric560 unique values
0 missing
SM06_AEA.ri.numeric560 unique values
0 missing
Vindexnumeric216 unique values
0 missing
Eig09_AEA.ed.numeric544 unique values
0 missing
Eig08_EA.ed.numeric622 unique values
0 missing
SM03_AEA.ri.numeric622 unique values
0 missing
Eig08_EA.ri.numeric546 unique values
0 missing
ATS4mnumeric593 unique values
0 missing
GMTInumeric737 unique values
0 missing
Eig10_EA.bo.numeric539 unique values
0 missing
Eig06_EAnumeric521 unique values
0 missing
SM14_AEA.bo.numeric521 unique values
0 missing
Eig07_AEA.dm.numeric566 unique values
0 missing
SpMax7_Bh.p.numeric447 unique values
0 missing
HVcpxnumeric556 unique values
0 missing
Eig10_AEA.bo.numeric513 unique values
0 missing
X4numeric719 unique values
0 missing
NssNHnumeric10 unique values
0 missing
X5numeric717 unique values
0 missing
SpMax7_Bh.m.numeric477 unique values
0 missing
ATS1mnumeric526 unique values
0 missing
Eig08_AEA.dm.numeric548 unique values
0 missing
X2solnumeric705 unique values
0 missing
JGI2numeric75 unique values
0 missing
Eig05_EA.ed.numeric672 unique values
0 missing
SM14_AEA.dm.numeric672 unique values
0 missing
Eta_C_Anumeric424 unique values
0 missing
Eig06_EA.ed.numeric673 unique values
0 missing
SM15_AEA.dm.numeric673 unique values
0 missing
SMTInumeric739 unique values
0 missing
Eig05_EA.ri.numeric575 unique values
0 missing
LPRSnumeric749 unique values
0 missing
Eig07_EA.bo.numeric537 unique values
0 missing
CATS2D_04_PLnumeric6 unique values
0 missing
SpAD_EA.bo.numeric750 unique values
0 missing
Eig12_AEA.ed.numeric502 unique values
0 missing
Eig06_EA.bo.numeric546 unique values
0 missing
CSInumeric545 unique values
0 missing
SpMax1_Bh.p.numeric264 unique values
0 missing
IACnumeric705 unique values
0 missing
TIC0numeric705 unique values
0 missing
C.025numeric9 unique values
0 missing
Eig10_EA.ed.numeric604 unique values
0 missing
SM05_AEA.ri.numeric604 unique values
0 missing

62 properties

837
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
12.49
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
5.29
Third quartile of skewness among attributes of the numeric type.
201089.25
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
1.51
First quartile of kurtosis among attributes of the numeric type.
3.07
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.84
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
24.07
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
898.38
Mean of means among attributes of the numeric type.
-0.18
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.39
First quartile of standard deviation of attributes of the numeric type.
0.47
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
3.3
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.08
Number of attributes divided by the number of instances.
2.4
Mean skewness among attributes of the numeric type.
3.04
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
5694.66
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.55
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.12
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.82
Second quartile (Median) of standard deviation of attributes of the numeric type.
160.63
Maximum kurtosis among attributes of the numeric type.
0.07
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
31025.01
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
41.3
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.59
Percentage of numeric attributes.
6.15
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.92
Minimum skewness among attributes of the numeric type.
1.41
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task