Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5145

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5145

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5145 (TID: 100126), and it has 747 rows and 68 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

70 features

pXC50 (target)numeric439 unique values
0 missing
molecule_id (row identifier)nominal747 unique values
0 missing
nCrsnumeric10 unique values
0 missing
nCsnumeric11 unique values
0 missing
SsssCHnumeric209 unique values
0 missing
CATS2D_02_DAnumeric8 unique values
0 missing
nR05numeric5 unique values
0 missing
GNarnumeric212 unique values
0 missing
SpMin4_Bh.s.numeric396 unique values
0 missing
nPyrrolidinesnumeric3 unique values
0 missing
nPyridinesnumeric4 unique values
0 missing
SaaNnumeric616 unique values
0 missing
NsssCHnumeric5 unique values
0 missing
C.008numeric4 unique values
0 missing
SRW05numeric7 unique values
0 missing
CATS2D_03_ALnumeric19 unique values
0 missing
X0Anumeric79 unique values
0 missing
MCDnumeric193 unique values
0 missing
ATSC8vnumeric717 unique values
0 missing
SaasCnumeric718 unique values
0 missing
nArCNOnumeric2 unique values
0 missing
SpMin5_Bh.m.numeric381 unique values
0 missing
MATS1snumeric293 unique values
0 missing
CATS2D_04_ALnumeric29 unique values
0 missing
JGI1numeric134 unique values
0 missing
NdOnumeric5 unique values
0 missing
O.058numeric5 unique values
0 missing
HNarnumeric213 unique values
0 missing
CATS2D_06_DAnumeric7 unique values
0 missing
X4vnumeric661 unique values
0 missing
C.025numeric8 unique values
0 missing
CATS2D_01_DAnumeric3 unique values
0 missing
Eig02_EAnumeric340 unique values
0 missing
SM10_AEA.bo.numeric340 unique values
0 missing
SpMin5_Bh.p.numeric377 unique values
0 missing
SpMin5_Bh.e.numeric384 unique values
0 missing
ATS8inumeric569 unique values
0 missing
SpMin5_Bh.v.numeric373 unique values
0 missing
C.040numeric5 unique values
0 missing
ATS5vnumeric541 unique values
0 missing
ATS8enumeric570 unique values
0 missing
SpDiam_EA.bo.numeric285 unique values
0 missing
Eig01_EA.bo.numeric284 unique values
0 missing
SM11_AEA.ri.numeric284 unique values
0 missing
SpMax_EA.bo.numeric284 unique values
0 missing
ATS5pnumeric524 unique values
0 missing
Eig02_AEA.ri.numeric368 unique values
0 missing
CATS2D_06_LLnumeric26 unique values
0 missing
SRW09numeric96 unique values
0 missing
C.002numeric9 unique values
0 missing
SpMin6_Bh.m.numeric388 unique values
0 missing
SpMin5_Bh.i.numeric369 unique values
0 missing
SRW07numeric29 unique values
0 missing
ATSC7vnumeric722 unique values
0 missing
CATS2D_01_LLnumeric20 unique values
0 missing
ATSC3vnumeric701 unique values
0 missing
SpMax3_Bh.p.numeric314 unique values
0 missing
CATS2D_09_ALnumeric16 unique values
0 missing
nPyrazolesnumeric3 unique values
0 missing
ATSC8inumeric601 unique values
0 missing
SpMin6_Bh.e.numeric358 unique values
0 missing
ATSC7inumeric616 unique values
0 missing
Eig15_EA.bo.numeric393 unique values
0 missing
Eig02_EA.ri.numeric366 unique values
0 missing
SpMin3_Bh.i.numeric322 unique values
0 missing
CATS2D_02_DLnumeric12 unique values
0 missing
Psi_e_Anumeric463 unique values
0 missing
Psi_i_Anumeric463 unique values
0 missing
ATS4pnumeric515 unique values
0 missing
X2Anumeric58 unique values
0 missing

62 properties

747
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
69
Number of numeric attributes.
1
Number of nominal attributes.
3.35
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.68
Third quartile of skewness among attributes of the numeric type.
5.98
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.45
First quartile of kurtosis among attributes of the numeric type.
1.52
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.99
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.64
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
3.26
Mean of means among attributes of the numeric type.
-0.37
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.19
First quartile of standard deviation of attributes of the numeric type.
-0.01
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
-0.04
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.09
Number of attributes divided by the number of instances.
0.17
Mean skewness among attributes of the numeric type.
1.99
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
1.16
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.02
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.2
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.47
Second quartile (Median) of standard deviation of attributes of the numeric type.
9.24
Maximum kurtosis among attributes of the numeric type.
-0.07
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
12.42
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.01
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.57
Percentage of numeric attributes.
4.47
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.08
Minimum skewness among attributes of the numeric type.
1.43
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task