Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2617

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2617

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2617 (TID: 12703), and it has 226 rows and 64 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

66 features

pXC50 (target)numeric178 unique values
0 missing
molecule_id (row identifier)nominal226 unique values
0 missing
P_VSA_MR_7numeric20 unique values
0 missing
NaasCnumeric11 unique values
0 missing
SaaOnumeric62 unique values
0 missing
SaaNnumeric92 unique values
0 missing
C.031numeric2 unique values
0 missing
CATS2D_01_AAnumeric2 unique values
0 missing
NaaOnumeric3 unique values
0 missing
PCRnumeric132 unique values
0 missing
N.075numeric3 unique values
0 missing
NaaNnumeric3 unique values
0 missing
C.043numeric3 unique values
0 missing
C.039numeric2 unique values
0 missing
nArCOnumeric2 unique values
0 missing
Eig08_AEA.ed.numeric157 unique values
0 missing
Eig08_EA.ed.numeric167 unique values
0 missing
SM03_AEA.ri.numeric167 unique values
0 missing
CATS2D_07_DAnumeric8 unique values
0 missing
GATS8mnumeric171 unique values
0 missing
CATS2D_08_APnumeric6 unique values
0 missing
MATS1snumeric106 unique values
0 missing
O.060numeric6 unique values
0 missing
GATS5vnumeric160 unique values
0 missing
P_VSA_s_3numeric179 unique values
0 missing
nArXnumeric5 unique values
0 missing
piIDnumeric180 unique values
0 missing
PCDnumeric176 unique values
0 missing
GATS5pnumeric165 unique values
0 missing
Cl.089numeric4 unique values
0 missing
P_VSA_LogP_8numeric6 unique values
0 missing
SdNHnumeric54 unique values
0 missing
NdNHnumeric3 unique values
0 missing
CATS2D_05_ALnumeric23 unique values
0 missing
CATS2D_08_LLnumeric26 unique values
0 missing
GATS2snumeric134 unique values
0 missing
P_VSA_p_3numeric193 unique values
0 missing
P_VSA_v_3numeric193 unique values
0 missing
ATSC4snumeric221 unique values
0 missing
CATS2D_06_AAnumeric10 unique values
0 missing
Eig03_EA.bo.numeric99 unique values
0 missing
SM13_AEA.ri.numeric99 unique values
0 missing
GATS4mnumeric168 unique values
0 missing
N.072numeric9 unique values
0 missing
ATSC4enumeric200 unique values
0 missing
DBInumeric65 unique values
0 missing
GATS3mnumeric163 unique values
0 missing
ALOGPnumeric201 unique values
0 missing
ALOGP2numeric201 unique values
0 missing
SM05_EA.bo.numeric137 unique values
0 missing
Eig07_EAnumeric144 unique values
0 missing
SM15_AEA.bo.numeric144 unique values
0 missing
Eig08_EAnumeric154 unique values
0 missing
SM02_AEA.dm.numeric154 unique values
0 missing
CATS2D_02_DDnumeric7 unique values
0 missing
piPC10numeric187 unique values
0 missing
nCpnumeric8 unique values
0 missing
P_VSA_LogP_4numeric62 unique values
0 missing
ATS6mnumeric196 unique values
0 missing
SpMin8_Bh.e.numeric135 unique values
0 missing
Eig07_EA.bo.numeric141 unique values
0 missing
GGI10numeric114 unique values
0 missing
ATS7mnumeric194 unique values
0 missing
CATS2D_08_AAnumeric9 unique values
0 missing
ATSC7enumeric202 unique values
0 missing
TIC1numeric198 unique values
0 missing

62 properties

226
Number of instances (rows) of the dataset.
66
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
65
Number of numeric attributes.
1
Number of nominal attributes.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.86
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
2.57
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
16.17
Mean of means among attributes of the numeric type.
-0.21
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.3
First quartile of standard deviation of attributes of the numeric type.
-0.15
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
0.72
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.29
Number of attributes divided by the number of instances.
0.56
Mean skewness among attributes of the numeric type.
1.97
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
6.18
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.33
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
-1.87
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.87
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
51.02
Maximum kurtosis among attributes of the numeric type.
-0.07
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
256.29
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
2.8
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.48
Percentage of numeric attributes.
4.72
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.3
Minimum skewness among attributes of the numeric type.
1.52
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
5.68
Maximum skewness among attributes of the numeric type.
0.05
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.27
Third quartile of skewness among attributes of the numeric type.
59.51
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.69
First quartile of kurtosis among attributes of the numeric type.
2.08
Third quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task