Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3969

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3969

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3969 (TID: 11016), and it has 183 rows and 67 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

69 features

pXC50 (target)numeric163 unique values
0 missing
molecule_id (row identifier)nominal183 unique values
0 missing
SM05_EA.bo.numeric115 unique values
0 missing
SpDiam_AEA.bo.numeric130 unique values
0 missing
SM06_EA.bo.numeric142 unique values
0 missing
SM03_EA.bo.numeric64 unique values
0 missing
SpMax3_Bh.m.numeric155 unique values
0 missing
SdOnumeric155 unique values
0 missing
Eig03_EA.bo.numeric129 unique values
0 missing
SM13_AEA.ri.numeric129 unique values
0 missing
Eig03_AEA.bo.numeric138 unique values
0 missing
Eig01_AEA.bo.numeric95 unique values
0 missing
SpMax_AEA.bo.numeric95 unique values
0 missing
X2vnumeric172 unique values
0 missing
SM14_AEA.ed.numeric133 unique values
0 missing
SM04_EA.bo.numeric134 unique values
0 missing
SpDiam_AEA.ed.numeric123 unique values
0 missing
SpDiam_EAnumeric104 unique values
0 missing
ATS1mnumeric145 unique values
0 missing
SM06_AEA.bo.numeric136 unique values
0 missing
SddssSnumeric101 unique values
0 missing
SpMax3_Bh.e.numeric151 unique values
0 missing
SM11_EAnumeric134 unique values
0 missing
SM12_AEA.ed.numeric135 unique values
0 missing
SM13_AEA.ed.numeric135 unique values
0 missing
X3vnumeric169 unique values
0 missing
SM10_AEA.ed.numeric135 unique values
0 missing
SM11_AEA.ed.numeric132 unique values
0 missing
SM15_EA.ed.numeric123 unique values
0 missing
X2solnumeric152 unique values
0 missing
X1vnumeric163 unique values
0 missing
SpMax3_Bh.i.numeric153 unique values
0 missing
P_VSA_e_3numeric53 unique values
0 missing
SpMax1_Bh.p.numeric121 unique values
0 missing
Eig01_EA.bo.numeric92 unique values
0 missing
SM11_AEA.ri.numeric92 unique values
0 missing
SpMax_EA.bo.numeric92 unique values
0 missing
P_VSA_s_1numeric9 unique values
0 missing
SpMax4_Bh.m.numeric147 unique values
0 missing
ZM2Madnumeric167 unique values
0 missing
SM03_EA.ed.numeric95 unique values
0 missing
SM05_EAnumeric73 unique values
0 missing
SpMax3_Bh.p.numeric148 unique values
0 missing
SM06_EAnumeric138 unique values
0 missing
SM05_EA.ed.numeric128 unique values
0 missing
SM06_EA.ed.numeric136 unique values
0 missing
SM09_AEA.ed.numeric133 unique values
0 missing
SpMax1_Bh.v.numeric130 unique values
0 missing
SM05_AEA.bo.numeric135 unique values
0 missing
SpDiam_AEA.dm.numeric95 unique values
0 missing
Eig01_AEA.ed.numeric91 unique values
0 missing
Eig01_EAnumeric97 unique values
0 missing
SM09_AEA.bo.numeric97 unique values
0 missing
SpMax_AEA.ed.numeric91 unique values
0 missing
SpMax_EAnumeric97 unique values
0 missing
SM08_AEA.ed.numeric137 unique values
0 missing
Eig01_AEA.dm.numeric87 unique values
0 missing
SpMax1_Bh.m.numeric94 unique values
0 missing
SpMax_AEA.dm.numeric87 unique values
0 missing
P_VSA_i_4numeric59 unique values
0 missing
SM04_AEA.bo.numeric134 unique values
0 missing
Eig01_EA.ed.numeric104 unique values
0 missing
SM10_AEA.dm.numeric104 unique values
0 missing
SpMax_EA.ed.numeric104 unique values
0 missing
SpMax3_Bh.v.numeric151 unique values
0 missing
N.numeric68 unique values
0 missing
nNnumeric8 unique values
0 missing
D.Dtr05numeric64 unique values
0 missing
SpMax4_Bh.p.numeric144 unique values
0 missing

62 properties

183
Number of instances (rows) of the dataset.
69
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
68
Number of numeric attributes.
1
Number of nominal attributes.
4.15
Maximum skewness among attributes of the numeric type.
0.12
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
-0.14
Third quartile of skewness among attributes of the numeric type.
73.58
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.77
First quartile of kurtosis among attributes of the numeric type.
2.48
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
3.92
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
4.47
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
12.06
Mean of means among attributes of the numeric type.
-1.91
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.51
First quartile of standard deviation of attributes of the numeric type.
0.02
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
3.55
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.38
Number of attributes divided by the number of instances.
-1.19
Mean skewness among attributes of the numeric type.
6.15
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
4.34
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-1.26
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-0.98
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.93
Second quartile (Median) of standard deviation of attributes of the numeric type.
31.72
Maximum kurtosis among attributes of the numeric type.
-2.96
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
164.69
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
6
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.55
Percentage of numeric attributes.
11.27
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-3.79
Minimum skewness among attributes of the numeric type.
1.45
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task