Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3863

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3863

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3863 (TID: 10903), and it has 192 rows and 66 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

68 features

pXC50 (target)numeric106 unique values
0 missing
molecule_id (row identifier)nominal192 unique values
0 missing
BIC0numeric87 unique values
0 missing
SIC0numeric95 unique values
0 missing
Eta_epsi_Anumeric105 unique values
0 missing
AACnumeric144 unique values
0 missing
IC0numeric144 unique values
0 missing
Menumeric49 unique values
0 missing
C.026numeric8 unique values
0 missing
H.numeric92 unique values
0 missing
AMWnumeric159 unique values
0 missing
Mvnumeric92 unique values
0 missing
GATS1mnumeric128 unique values
0 missing
Eig02_EA.bo.numeric114 unique values
0 missing
SM12_AEA.ri.numeric114 unique values
0 missing
N.071numeric2 unique values
0 missing
ZM1MulPernumeric187 unique values
0 missing
ATSC6enumeric160 unique values
0 missing
JGI4numeric29 unique values
0 missing
SpMin5_Bh.s.numeric108 unique values
0 missing
SsssCHnumeric97 unique values
0 missing
nArNR2numeric2 unique values
0 missing
SIC1numeric120 unique values
0 missing
CIC0numeric163 unique values
0 missing
Eig03_EA.bo.numeric138 unique values
0 missing
SM13_AEA.ri.numeric138 unique values
0 missing
nPyridinesnumeric4 unique values
0 missing
SpMin2_Bh.s.numeric134 unique values
0 missing
SpMax2_Bh.m.numeric124 unique values
0 missing
Eig01_EA.bo.numeric107 unique values
0 missing
SM11_AEA.ri.numeric107 unique values
0 missing
SpDiam_EA.bo.numeric107 unique values
0 missing
SpMax_EA.bo.numeric107 unique values
0 missing
SpMax6_Bh.s.numeric155 unique values
0 missing
GATS2inumeric148 unique values
0 missing
SpMin2_Bh.m.numeric105 unique values
0 missing
DLS_consnumeric27 unique values
0 missing
SM08_EA.bo.numeric152 unique values
0 missing
GATS2mnumeric152 unique values
0 missing
SM15_EA.bo.numeric141 unique values
0 missing
BIC1numeric122 unique values
0 missing
H.052numeric14 unique values
0 missing
GATS6pnumeric157 unique values
0 missing
SpMin1_Bh.s.numeric103 unique values
0 missing
P_VSA_m_3numeric61 unique values
0 missing
ATSC1enumeric109 unique values
0 missing
ZM1Kupnumeric180 unique values
0 missing
SM13_EA.bo.numeric140 unique values
0 missing
SM14_EA.bo.numeric144 unique values
0 missing
nCrsnumeric12 unique values
0 missing
CIC5numeric156 unique values
0 missing
MATS1snumeric133 unique values
0 missing
CIC1numeric174 unique values
0 missing
ON1Vnumeric175 unique values
0 missing
IC1numeric169 unique values
0 missing
SpMax8_Bh.s.numeric151 unique values
0 missing
SM10_EA.bo.numeric152 unique values
0 missing
GATS2vnumeric148 unique values
0 missing
JGI3numeric45 unique values
0 missing
SpMax1_Bh.m.numeric117 unique values
0 missing
Psi_e_Anumeric160 unique values
0 missing
Psi_i_Anumeric160 unique values
0 missing
C.029numeric4 unique values
0 missing
ATSC3vnumeric186 unique values
0 missing
RCInumeric34 unique values
0 missing
RFDnumeric34 unique values
0 missing
ATSC2enumeric148 unique values
0 missing
SIC5numeric96 unique values
0 missing

62 properties

192
Number of instances (rows) of the dataset.
68
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
67
Number of numeric attributes.
1
Number of nominal attributes.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.64
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
2.7
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
18.29
Mean of means among attributes of the numeric type.
0.02
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.1
First quartile of standard deviation of attributes of the numeric type.
0.34
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
0.96
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.35
Number of attributes divided by the number of instances.
0.69
Mean skewness among attributes of the numeric type.
1.57
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
4.49
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.61
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
-1.96
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.28
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
60.46
Maximum kurtosis among attributes of the numeric type.
-0.03
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
463.16
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.7
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.53
Percentage of numeric attributes.
4.39
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.34
Minimum skewness among attributes of the numeric type.
1.47
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
7.05
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.1
Third quartile of skewness among attributes of the numeric type.
125.69
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.29
First quartile of kurtosis among attributes of the numeric type.
0.64
Third quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task