Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4802

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4802

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4802 (TID: 12899), and it has 182 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric108 unique values
0 missing
molecule_id (row identifier)nominal182 unique values
0 missing
P_VSA_e_3numeric41 unique values
0 missing
P_VSA_i_4numeric49 unique values
0 missing
Eig05_EA.dm.numeric17 unique values
0 missing
C.008numeric4 unique values
0 missing
nNnumeric10 unique values
0 missing
ATSC1enumeric83 unique values
0 missing
nCrsnumeric5 unique values
0 missing
ATSC3snumeric133 unique values
0 missing
nHetnumeric15 unique values
0 missing
ATSC4enumeric126 unique values
0 missing
nCsnumeric8 unique values
0 missing
ATSC3enumeric115 unique values
0 missing
nRCONH2numeric3 unique values
0 missing
nHAccnumeric13 unique values
0 missing
P_VSA_p_2numeric59 unique values
0 missing
P_VSA_v_2numeric71 unique values
0 missing
SAaccnumeric71 unique values
0 missing
TPSA.NO.numeric64 unique values
0 missing
TPSA.Tot.numeric65 unique values
0 missing
SdOnumeric50 unique values
0 missing
Menumeric58 unique values
0 missing
ATSC2snumeric133 unique values
0 missing
P_VSA_s_6numeric69 unique values
0 missing
X0Avnumeric70 unique values
0 missing
ATSC8snumeric129 unique values
0 missing
SpMax6_Bh.s.numeric109 unique values
0 missing
GATS2enumeric113 unique values
0 missing
Eta_alpha_Anumeric55 unique values
0 missing
ATSC4snumeric134 unique values
0 missing
SpMax7_Bh.s.numeric112 unique values
0 missing
ATSC5enumeric124 unique values
0 missing
AACnumeric97 unique values
0 missing
IC0numeric97 unique values
0 missing
ATSC1snumeric122 unique values
0 missing
ATSC5snumeric134 unique values
0 missing
CATS2D_06_APnumeric3 unique values
0 missing
N.072numeric5 unique values
0 missing
Psi_e_Anumeric108 unique values
0 missing
Psi_i_Anumeric108 unique values
0 missing
Eta_epsi_Anumeric79 unique values
0 missing
Eig02_EA.dm.numeric28 unique values
0 missing
ATSC7snumeric130 unique values
0 missing
CATS2D_05_DAnumeric6 unique values
0 missing
CATS2D_08_DAnumeric8 unique values
0 missing
cRo5numeric2 unique values
0 missing
DLS_01numeric3 unique values
0 missing
Eig04_EA.dm.numeric16 unique values
0 missing
O.058numeric5 unique values
0 missing
TIEnumeric134 unique values
0 missing
MATS6snumeric111 unique values
0 missing
CATS2D_06_DPnumeric6 unique values
0 missing
P_VSA_m_3numeric34 unique values
0 missing
SM02_EA.dm.numeric65 unique values
0 missing
SpAD_EA.dm.numeric65 unique values
0 missing
Eig07_EA.dm.numeric9 unique values
0 missing
P_VSA_s_4numeric59 unique values
0 missing
ATSC8enumeric116 unique values
0 missing
NsssCHnumeric5 unique values
0 missing
nDBnumeric9 unique values
0 missing
SpMax5_Bh.s.numeric96 unique values
0 missing
Eig06_EA.dm.numeric8 unique values
0 missing
nOnumeric7 unique values
0 missing
SpMAD_EA.dm.numeric95 unique values
0 missing
SpMax4_Bh.s.numeric90 unique values
0 missing
GATS2pnumeric102 unique values
0 missing

62 properties

182
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
3.6
Maximum skewness among attributes of the numeric type.
0.02
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.4
Third quartile of skewness among attributes of the numeric type.
86.43
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.86
First quartile of kurtosis among attributes of the numeric type.
38.14
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.6
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.21
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
28.01
Mean of means among attributes of the numeric type.
0.48
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.41
First quartile of standard deviation of attributes of the numeric type.
0.5
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
-0.33
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.37
Number of attributes divided by the number of instances.
0.92
Mean skewness among attributes of the numeric type.
1.94
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
18.02
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.79
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.33
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
1.09
Second quartile (Median) of standard deviation of attributes of the numeric type.
17.23
Maximum kurtosis among attributes of the numeric type.
-0.06
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
162.34
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.7
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.51
Percentage of numeric attributes.
51.31
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.72
Minimum skewness among attributes of the numeric type.
1.49
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task