Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2411

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2411

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2411 (TID: 12020), and it has 118 rows and 63 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

65 features

pXC50 (target)numeric82 unique values
0 missing
molecule_id (row identifier)nominal118 unique values
0 missing
GATS4enumeric107 unique values
0 missing
SIC5numeric64 unique values
0 missing
GATS4snumeric107 unique values
0 missing
BIC5numeric71 unique values
0 missing
CIC5numeric84 unique values
0 missing
BIC4numeric72 unique values
0 missing
CATS2D_02_AAnumeric5 unique values
0 missing
P_VSA_MR_7numeric13 unique values
0 missing
CATS2D_06_ALnumeric14 unique values
0 missing
MATS5vnumeric95 unique values
0 missing
SIC4numeric68 unique values
0 missing
nN.CO.2numeric2 unique values
0 missing
Eig03_AEA.ri.numeric76 unique values
0 missing
Eig03_EAnumeric63 unique values
0 missing
SM11_AEA.bo.numeric63 unique values
0 missing
GATS4mnumeric100 unique values
0 missing
GGI6numeric63 unique values
0 missing
D.Dtr08numeric11 unique values
0 missing
CATS2D_07_DAnumeric4 unique values
0 missing
CIC4numeric87 unique values
0 missing
CATS2D_07_ALnumeric10 unique values
0 missing
D.Dtr05numeric55 unique values
0 missing
MATS5mnumeric94 unique values
0 missing
GATS5vnumeric86 unique values
0 missing
Eig02_EA.dm.numeric20 unique values
0 missing
N.068numeric3 unique values
0 missing
nRNR2numeric3 unique values
0 missing
SM02_EA.dm.numeric48 unique values
0 missing
piPC10numeric89 unique values
0 missing
Eig03_EA.ri.numeric75 unique values
0 missing
Eig03_AEA.bo.numeric62 unique values
0 missing
SpMaxA_EA.bo.numeric55 unique values
0 missing
MATS4enumeric93 unique values
0 missing
SRW09numeric20 unique values
0 missing
ATSC1pnumeric93 unique values
0 missing
N.067numeric2 unique values
0 missing
nRNHRnumeric2 unique values
0 missing
MATS7enumeric100 unique values
0 missing
N.numeric58 unique values
0 missing
GGI5numeric62 unique values
0 missing
SpMAD_EA.dm.numeric76 unique values
0 missing
Eig04_EA.bo.numeric61 unique values
0 missing
SM14_AEA.ri.numeric61 unique values
0 missing
D.Dtr10numeric55 unique values
0 missing
CATS2D_07_DLnumeric4 unique values
0 missing
MATS4mnumeric94 unique values
0 missing
ATS4snumeric107 unique values
0 missing
SRW07numeric14 unique values
0 missing
SpMin3_Bh.s.numeric74 unique values
0 missing
GATS6vnumeric99 unique values
0 missing
UNIPnumeric68 unique values
0 missing
GATS7vnumeric97 unique values
0 missing
ATSC2vnumeric107 unique values
0 missing
SssNHnumeric63 unique values
0 missing
nCONNnumeric2 unique values
0 missing
ATSC4snumeric113 unique values
0 missing
CATS2D_06_DLnumeric5 unique values
0 missing
nR08numeric3 unique values
0 missing
C.041numeric2 unique values
0 missing
MATS2vnumeric88 unique values
0 missing
piPC05numeric90 unique values
0 missing
ATSC1mnumeric93 unique values
0 missing
IC5numeric84 unique values
0 missing

62 properties

118
Number of instances (rows) of the dataset.
65
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
64
Number of numeric attributes.
1
Number of nominal attributes.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.49
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.48
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
8.72
Mean of means among attributes of the numeric type.
-0.28
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.15
First quartile of standard deviation of attributes of the numeric type.
0.13
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
0.22
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.55
Number of attributes divided by the number of instances.
0.48
Mean skewness among attributes of the numeric type.
1.03
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
7.89
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.41
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
-1.4
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.42
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
14.35
Maximum kurtosis among attributes of the numeric type.
-0.05
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
154.74
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
2.72
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.46
Percentage of numeric attributes.
4.8
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.19
Minimum skewness among attributes of the numeric type.
1.54
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
3.48
Maximum skewness among attributes of the numeric type.
0.04
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.31
Third quartile of skewness among attributes of the numeric type.
171.7
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.5
First quartile of kurtosis among attributes of the numeric type.
1.21
Third quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task