Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4779

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4779

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4779 (TID: 10436), and it has 143 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric106 unique values
0 missing
molecule_id (row identifier)nominal143 unique values
0 missing
nN.Nnumeric2 unique values
0 missing
nCONNnumeric2 unique values
0 missing
CATS2D_01_DDnumeric2 unique values
0 missing
nCconjnumeric6 unique values
0 missing
SssNHnumeric122 unique values
0 missing
N.072numeric9 unique values
0 missing
P_VSA_s_5numeric24 unique values
0 missing
NssNHnumeric8 unique values
0 missing
N.numeric55 unique values
0 missing
CATS2D_02_DDnumeric3 unique values
0 missing
CATS2D_06_DLnumeric17 unique values
0 missing
CATS2D_03_DDnumeric8 unique values
0 missing
Uindexnumeric121 unique values
0 missing
CATS2D_02_DAnumeric12 unique values
0 missing
MDDDnumeric120 unique values
0 missing
SM07_EA.ri.numeric128 unique values
0 missing
nNnumeric14 unique values
0 missing
CATS2D_03_DAnumeric10 unique values
0 missing
SM05_EA.ri.numeric121 unique values
0 missing
P_VSA_e_3numeric39 unique values
0 missing
P_VSA_i_4numeric42 unique values
0 missing
GGI5numeric92 unique values
0 missing
SM09_EA.ri.numeric132 unique values
0 missing
SM08_EA.ri.numeric135 unique values
0 missing
Eig04_EA.dm.numeric50 unique values
0 missing
CATS2D_09_DDnumeric7 unique values
0 missing
SIC0numeric82 unique values
0 missing
CATS2D_04_DLnumeric17 unique values
0 missing
DBInumeric71 unique values
0 missing
DECCnumeric115 unique values
0 missing
ICRnumeric110 unique values
0 missing
LLS_02numeric5 unique values
0 missing
S3Knumeric123 unique values
0 missing
ATS4pnumeric133 unique values
0 missing
SM06_EA.ri.numeric132 unique values
0 missing
ATSC5pnumeric137 unique values
0 missing
ATSC5inumeric132 unique values
0 missing
SpMAD_EA.ri.numeric90 unique values
0 missing
SM10_EA.ri.numeric130 unique values
0 missing
BIC0numeric81 unique values
0 missing
ATS1snumeric123 unique values
0 missing
Eig12_AEA.ri.numeric104 unique values
0 missing
Eig12_EAnumeric88 unique values
0 missing
Eig12_EA.ri.numeric103 unique values
0 missing
PHInumeric119 unique values
0 missing
SM06_AEA.dm.numeric88 unique values
0 missing
SpMaxA_AEA.bo.numeric96 unique values
0 missing
SpMaxA_EA.bo.numeric89 unique values
0 missing
ATSC6pnumeric138 unique values
0 missing
AECCnumeric116 unique values
0 missing
IDEnumeric120 unique values
0 missing
MSDnumeric121 unique values
0 missing
ATS5pnumeric135 unique values
0 missing
ATSC5vnumeric138 unique values
0 missing
Eig01_AEA.ed.numeric77 unique values
0 missing
Eig01_EA.ed.numeric88 unique values
0 missing
SM10_AEA.dm.numeric88 unique values
0 missing
SM14_EA.ed.numeric117 unique values
0 missing
SM15_EA.ed.numeric114 unique values
0 missing
SpDiam_AEA.ri.numeric106 unique values
0 missing
SpMax_AEA.ed.numeric77 unique values
0 missing
SpMax_EA.ed.numeric88 unique values
0 missing
ATSC4inumeric124 unique values
0 missing
ATSC6vnumeric138 unique values
0 missing
TIEnumeric138 unique values
0 missing

62 properties

143
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
3.48
Maximum skewness among attributes of the numeric type.
0.04
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.91
Third quartile of skewness among attributes of the numeric type.
142.54
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
1.47
First quartile of kurtosis among attributes of the numeric type.
3.29
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.13
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
3.2
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
11.86
Mean of means among attributes of the numeric type.
0.5
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.51
First quartile of standard deviation of attributes of the numeric type.
-0.07
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
2.3
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.47
Number of attributes divided by the number of instances.
1.19
Mean skewness among attributes of the numeric type.
5.02
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
7.1
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
1.31
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.03
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
1.1
Second quartile (Median) of standard deviation of attributes of the numeric type.
16.91
Maximum kurtosis among attributes of the numeric type.
0.14
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
138.77
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
4.84
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.51
Percentage of numeric attributes.
10.28
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.05
Minimum skewness among attributes of the numeric type.
1.49
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task