Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2568

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2568

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2568 (TID: 11442), and it has 517 rows and 67 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

69 features

pXC50 (target)numeric307 unique values
0 missing
molecule_id (row identifier)nominal517 unique values
0 missing
X4Anumeric39 unique values
0 missing
PW5numeric58 unique values
0 missing
X5Anumeric33 unique values
0 missing
X3Anumeric52 unique values
0 missing
SpMAD_AEA.bo.numeric126 unique values
0 missing
P_VSA_LogP_6numeric35 unique values
0 missing
RCInumeric23 unique values
0 missing
RFDnumeric22 unique values
0 missing
SpMAD_AEA.ri.numeric124 unique values
0 missing
D.Dtr08numeric42 unique values
0 missing
Eig05_AEA.ed.numeric246 unique values
0 missing
SpMAD_EA.ed.numeric291 unique values
0 missing
SpMax2_Bh.e.numeric146 unique values
0 missing
CATS2D_03_DAnumeric6 unique values
0 missing
C.035numeric3 unique values
0 missing
Cl.090numeric2 unique values
0 missing
Rbridnumeric3 unique values
0 missing
nR08numeric2 unique values
0 missing
Eta_sh_ynumeric155 unique values
0 missing
nCIRnumeric8 unique values
0 missing
SaaSnumeric53 unique values
0 missing
SpMax2_Bh.i.numeric157 unique values
0 missing
SpMAD_AEA.dm.numeric148 unique values
0 missing
SpMax2_Bh.v.numeric170 unique values
0 missing
nThiophenesnumeric2 unique values
0 missing
SRW09numeric43 unique values
0 missing
SpMax1_Bh.s.numeric36 unique values
0 missing
NNRSnumeric5 unique values
0 missing
DECCnumeric262 unique values
0 missing
SRW07numeric16 unique values
0 missing
GATS4mnumeric291 unique values
0 missing
MPC06numeric105 unique values
0 missing
Eig02_AEA.ri.numeric231 unique values
0 missing
MATS6mnumeric281 unique values
0 missing
SpMax2_Bh.p.numeric176 unique values
0 missing
C.041numeric3 unique values
0 missing
Eig02_AEA.bo.numeric205 unique values
0 missing
SpMin1_Bh.e.numeric99 unique values
0 missing
SpMin1_Bh.i.numeric85 unique values
0 missing
IC1numeric316 unique values
0 missing
SpMax1_Bh.m.numeric146 unique values
0 missing
SpMin1_Bh.p.numeric121 unique values
0 missing
MWC10numeric299 unique values
0 missing
NaaSnumeric2 unique values
0 missing
P_VSA_LogP_2numeric128 unique values
0 missing
SpMin1_Bh.v.numeric116 unique values
0 missing
Eig02_EA.ri.numeric220 unique values
0 missing
Eig02_EAnumeric200 unique values
0 missing
SM10_AEA.bo.numeric200 unique values
0 missing
SIC1numeric195 unique values
0 missing
Eig02_AEA.ed.numeric165 unique values
0 missing
JGI3numeric48 unique values
0 missing
nCONNnumeric3 unique values
0 missing
SpMAD_EAnumeric111 unique values
0 missing
MPC07numeric126 unique values
0 missing
GATS3mnumeric281 unique values
0 missing
X2Anumeric49 unique values
0 missing
GATS2mnumeric240 unique values
0 missing
P_VSA_LogP_5numeric192 unique values
0 missing
SpMAD_AEA.ed.numeric139 unique values
0 missing
SM05_EA.bo.numeric237 unique values
0 missing
SM09_EA.bo.numeric286 unique values
0 missing
SM10_EA.bo.numeric292 unique values
0 missing
Eig01_EAnumeric173 unique values
0 missing
SM09_AEA.bo.numeric173 unique values
0 missing
SpMax_EAnumeric173 unique values
0 missing
CIC1numeric366 unique values
0 missing

62 properties

517
Number of instances (rows) of the dataset.
69
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
68
Number of numeric attributes.
1
Number of nominal attributes.
7.02
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.84
Third quartile of skewness among attributes of the numeric type.
33.34
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.1
First quartile of kurtosis among attributes of the numeric type.
0.45
Third quartile of standard deviation of attributes of the numeric type.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.44
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
7.26
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
3.98
Mean of means among attributes of the numeric type.
-0.88
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.07
First quartile of standard deviation of attributes of the numeric type.
0.15
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
1.76
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.13
Number of attributes divided by the number of instances.
-0.25
Mean skewness among attributes of the numeric type.
2.01
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
Percentage of instances belonging to the most frequent class.
1.5
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.09
Second quartile (Median) of skewness among attributes of the numeric type.
Maximum entropy among attributes.
-1.88
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.17
Second quartile (Median) of standard deviation of attributes of the numeric type.
60.3
Maximum kurtosis among attributes of the numeric type.
0.04
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
37.36
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
7.2
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.55
Percentage of numeric attributes.
4.21
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-4.45
Minimum skewness among attributes of the numeric type.
1.45
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task