Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1743122

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1743122

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1743122 (TID: 104063), and it has 63 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric59 unique values
0 missing
molecule_id (row identifier)nominal63 unique values
0 missing
Eig08_AEA.ed.numeric59 unique values
0 missing
Eig12_AEA.ed.numeric49 unique values
0 missing
Psi_i_1numeric63 unique values
0 missing
P_VSA_s_3numeric58 unique values
0 missing
X4vnumeric63 unique values
0 missing
ATS1pnumeric61 unique values
0 missing
ATS2pnumeric60 unique values
0 missing
ATS3pnumeric62 unique values
0 missing
ATS3vnumeric62 unique values
0 missing
Eig05_AEA.ed.numeric61 unique values
0 missing
Eig06_AEA.ed.numeric60 unique values
0 missing
X2vnumeric63 unique values
0 missing
ALOGPnumeric63 unique values
0 missing
ALOGP2numeric63 unique values
0 missing
ATS2vnumeric59 unique values
0 missing
ATSC2inumeric63 unique values
0 missing
Eig10_AEA.ed.numeric56 unique values
0 missing
Eig11_AEA.ed.numeric51 unique values
0 missing
SM02_EA.ri.numeric62 unique values
0 missing
SpAD_AEA.bo.numeric63 unique values
0 missing
SpAD_AEA.ed.numeric62 unique values
0 missing
SpAD_AEA.ri.numeric63 unique values
0 missing
SpAD_EAnumeric62 unique values
0 missing
X1vnumeric63 unique values
0 missing
X5vnumeric61 unique values
0 missing
SpMax7_Bh.p.numeric55 unique values
0 missing
SpMax7_Bh.v.numeric52 unique values
0 missing
SpMin6_Bh.s.numeric52 unique values
0 missing
SpMin7_Bh.i.numeric44 unique values
0 missing
TPCnumeric59 unique values
0 missing
ATSC3mnumeric63 unique values
0 missing
ATSC4mnumeric63 unique values
0 missing
Chi1_EA.bo.numeric63 unique values
0 missing
Eta_Cnumeric63 unique values
0 missing
Eta_Lnumeric63 unique values
0 missing
SpMax7_Bh.m.numeric57 unique values
0 missing
Wapnumeric62 unique values
0 missing
X1Kupnumeric63 unique values
0 missing
X1MulPernumeric63 unique values
0 missing
X1Pernumeric62 unique values
0 missing
X3vnumeric63 unique values
0 missing
X4numeric62 unique values
0 missing
X4solnumeric62 unique values
0 missing
ATS4pnumeric60 unique values
0 missing
ATSC4pnumeric63 unique values
0 missing
MPC03numeric48 unique values
0 missing
MPC04numeric49 unique values
0 missing
MWC05numeric61 unique values
0 missing
MWC06numeric62 unique values
0 missing
MWC07numeric61 unique values
0 missing
MWC08numeric61 unique values
0 missing
SM02_AEA.ed.numeric55 unique values
0 missing
Spnumeric62 unique values
0 missing
SpAD_EA.ed.numeric62 unique values
0 missing
SpMax6_Bh.i.numeric61 unique values
0 missing
SpMax6_Bh.p.numeric58 unique values
0 missing
SpMax7_Bh.e.numeric58 unique values
0 missing
SpMaxA_EA.bo.numeric58 unique values
0 missing
SpMin6_Bh.e.numeric59 unique values
0 missing
SpMin6_Bh.i.numeric59 unique values
0 missing
SRW06numeric62 unique values
0 missing
SRW08numeric60 unique values
0 missing
X5numeric61 unique values
0 missing
X5solnumeric60 unique values
0 missing
BLTA96numeric57 unique values
0 missing

62 properties

63
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
2.88
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.21
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
736.38
Mean of means among attributes of the numeric type.
-0.87
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.58
First quartile of standard deviation of attributes of the numeric type.
-0.07
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
0.51
Second quartile (Median) of kurtosis among attributes of the numeric type.
1.06
Number of attributes divided by the number of instances.
-0.01
Mean skewness among attributes of the numeric type.
5.29
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
2195.26
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.08
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
-1.12
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
1.31
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
26.92
Maximum kurtosis among attributes of the numeric type.
-3.32
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
47918.32
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.43
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.51
Percentage of numeric attributes.
9.23
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.66
Minimum skewness among attributes of the numeric type.
1.49
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
4.98
Maximum skewness among attributes of the numeric type.
0.09
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.6
Third quartile of skewness among attributes of the numeric type.
144588.21
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.12
First quartile of kurtosis among attributes of the numeric type.
3.7
Third quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task