Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1741213

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1741213

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1741213 (TID: 104009), and it has 993 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric530 unique values
0 missing
molecule_id (row identifier)nominal993 unique values
0 missing
D.Dtr09numeric360 unique values
0 missing
Eig11_AEA.bo.numeric622 unique values
0 missing
Xindexnumeric234 unique values
0 missing
Eig08_AEA.bo.numeric492 unique values
0 missing
Vindexnumeric177 unique values
0 missing
Eig08_EAnumeric508 unique values
0 missing
SM02_AEA.dm.numeric508 unique values
0 missing
SpMax5_Bh.m.numeric546 unique values
0 missing
Eig08_EA.ed.numeric622 unique values
0 missing
SM03_AEA.ri.numeric622 unique values
0 missing
Eig08_AEA.ed.numeric528 unique values
0 missing
Eig08_AEA.ri.numeric558 unique values
0 missing
RDCHInumeric650 unique values
0 missing
Eig08_EA.ri.numeric554 unique values
0 missing
Eig10_AEA.bo.numeric609 unique values
0 missing
Eig11_EA.bo.numeric672 unique values
0 missing
Yindexnumeric414 unique values
0 missing
Eig11_AEA.ri.numeric689 unique values
0 missing
SpMax5_Bh.p.numeric458 unique values
0 missing
SpMax5_Bh.v.numeric483 unique values
0 missing
Eig07_EAnumeric503 unique values
0 missing
SM15_AEA.bo.numeric503 unique values
0 missing
GMTIVnumeric951 unique values
0 missing
Eig02_EAnumeric467 unique values
0 missing
SM10_AEA.bo.numeric467 unique values
0 missing
SMTIVnumeric933 unique values
0 missing
Eig07_AEA.ri.numeric530 unique values
0 missing
X1vnumeric870 unique values
0 missing
Eig08_EA.bo.numeric572 unique values
0 missing
GMTInumeric856 unique values
0 missing
Wapnumeric834 unique values
0 missing
ATS2pnumeric524 unique values
0 missing
CSInumeric466 unique values
0 missing
SpAD_EA.bo.numeric902 unique values
0 missing
ATS1pnumeric511 unique values
0 missing
ATSC3inumeric609 unique values
0 missing
SpMax5_Bh.i.numeric489 unique values
0 missing
ATS2vnumeric508 unique values
0 missing
Eig13_EA.ed.numeric689 unique values
0 missing
SM08_AEA.ri.numeric689 unique values
0 missing
piIDnumeric811 unique values
0 missing
SpAD_AEA.dm.numeric946 unique values
0 missing
SpMaxA_AEA.ri.numeric133 unique values
0 missing
LPRSnumeric903 unique values
0 missing
SMTInumeric864 unique values
0 missing
X0vnumeric866 unique values
0 missing
Eig09_AEA.bo.numeric557 unique values
0 missing
SpAD_EA.ri.numeric953 unique values
0 missing
Eig06_EA.ri.numeric570 unique values
0 missing
ATSC4inumeric633 unique values
0 missing
X2solnumeric851 unique values
0 missing
Eig09_AEA.ri.numeric609 unique values
0 missing
X1solnumeric735 unique values
0 missing
Eig10_EA.bo.numeric658 unique values
0 missing
piPC01numeric71 unique values
0 missing
SCBOnumeric71 unique values
0 missing
Eig11_AEA.ed.numeric569 unique values
0 missing
Eig13_EA.bo.numeric663 unique values
0 missing
MWC04numeric281 unique values
0 missing
Psi_i_1numeric918 unique values
0 missing
ECCnumeric292 unique values
0 missing
SpAD_EA.ed.numeric900 unique values
0 missing
piPC02numeric215 unique values
0 missing
SM02_EA.bo.numeric215 unique values
0 missing
SpMax4_Bh.v.numeric517 unique values
0 missing
MSDnumeric796 unique values
0 missing
SpMin4_Bh.p.numeric458 unique values
0 missing
Eig09_EA.ri.numeric588 unique values
0 missing
ZM2Vnumeric302 unique values
0 missing

62 properties

993
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.31
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
2.02
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
767.84
Mean of means among attributes of the numeric type.
-0.17
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.2
First quartile of standard deviation of attributes of the numeric type.
0.53
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
0.97
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.07
Number of attributes divided by the number of instances.
0.36
Mean skewness among attributes of the numeric type.
3.04
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
493.53
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.31
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
-0.92
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.47
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
41.66
Maximum kurtosis among attributes of the numeric type.
-1.1
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
18869
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
2.35
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.59
Percentage of numeric attributes.
11.67
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.36
Minimum skewness among attributes of the numeric type.
1.41
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
4.81
Maximum skewness among attributes of the numeric type.
0.03
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.9
Third quartile of skewness among attributes of the numeric type.
11265.92
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.33
First quartile of kurtosis among attributes of the numeric type.
2.21
Third quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task