Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5683

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5683

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5683 (TID: 101281), and it has 670 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric34 unique values
0 missing
molecule_id (row identifier)nominal670 unique values
0 missing
Chi0_EA.dm.numeric580 unique values
0 missing
Chi1_EA.dm.numeric590 unique values
0 missing
SsssNnumeric152 unique values
0 missing
ATSC3mnumeric649 unique values
0 missing
SpMin7_Bh.m.numeric377 unique values
0 missing
ATSC2mnumeric623 unique values
0 missing
PHInumeric578 unique values
0 missing
ATS4enumeric514 unique values
0 missing
AACnumeric370 unique values
0 missing
AECCnumeric503 unique values
0 missing
ALOGPnumeric599 unique values
0 missing
ALOGP2numeric639 unique values
0 missing
AMRnumeric641 unique values
0 missing
AMWnumeric523 unique values
0 missing
ARRnumeric180 unique values
0 missing
ATS1enumeric453 unique values
0 missing
ATS1inumeric452 unique values
0 missing
ATS1mnumeric441 unique values
0 missing
ATS1pnumeric429 unique values
0 missing
ATS1snumeric459 unique values
0 missing
ATS1vnumeric436 unique values
0 missing
ATS2enumeric473 unique values
0 missing
ATS2inumeric473 unique values
0 missing
ATS2mnumeric461 unique values
0 missing
ATS2pnumeric455 unique values
0 missing
ATS2snumeric500 unique values
0 missing
ATS2vnumeric448 unique values
0 missing
ATS3enumeric475 unique values
0 missing
ATS3inumeric488 unique values
0 missing
ATS3mnumeric470 unique values
0 missing
ATS3pnumeric469 unique values
0 missing
ATS3snumeric487 unique values
0 missing
ATS3vnumeric470 unique values
0 missing
ATS4inumeric505 unique values
0 missing
ATS4mnumeric507 unique values
0 missing
ATS4pnumeric508 unique values
0 missing
ATS4snumeric502 unique values
0 missing
ATS4vnumeric494 unique values
0 missing
ATS5enumeric513 unique values
0 missing
ATS5inumeric517 unique values
0 missing
ATS5mnumeric510 unique values
0 missing
ATS5pnumeric512 unique values
0 missing
ATS5snumeric522 unique values
0 missing
ATS5vnumeric518 unique values
0 missing
ATS6enumeric528 unique values
0 missing
ATS6inumeric534 unique values
0 missing
ATS6mnumeric509 unique values
0 missing
ATS6pnumeric519 unique values
0 missing
ATS6snumeric520 unique values
0 missing
ATS6vnumeric528 unique values
0 missing
ATS7enumeric537 unique values
0 missing
ATS7inumeric551 unique values
0 missing
ATS7mnumeric538 unique values
0 missing
ATS7pnumeric544 unique values
0 missing
ATS7snumeric541 unique values
0 missing
ATS7vnumeric536 unique values
0 missing
ATS8enumeric558 unique values
0 missing
ATS8inumeric565 unique values
0 missing
ATS8mnumeric537 unique values
0 missing
ATS8pnumeric561 unique values
0 missing
ATS8snumeric547 unique values
0 missing
ATS8vnumeric544 unique values
0 missing
ATSC1enumeric212 unique values
0 missing
ATSC1inumeric413 unique values
0 missing
ATSC1mnumeric614 unique values
0 missing
ATSC1pnumeric588 unique values
0 missing
ATSC1snumeric637 unique values
0 missing
ATSC1vnumeric595 unique values
0 missing
ATSC2enumeric388 unique values
0 missing

62 properties

670
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
3.71
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
3.75
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
6.76
Mean of means among attributes of the numeric type.
-1.11
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.27
First quartile of standard deviation of attributes of the numeric type.
0.84
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
0.67
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.11
Number of attributes divided by the number of instances.
-0.27
Mean skewness among attributes of the numeric type.
4.18
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
1.58
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.32
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
-0.21
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.38
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
45.57
Maximum kurtosis among attributes of the numeric type.
0.1
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
105.28
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
6.07
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.59
Percentage of numeric attributes.
5.2
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.95
Minimum skewness among attributes of the numeric type.
1.41
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
5.92
Maximum skewness among attributes of the numeric type.
0.07
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.31
Third quartile of skewness among attributes of the numeric type.
23.04
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.27
First quartile of kurtosis among attributes of the numeric type.
0.65
Third quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task