Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1075145

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1075145

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1075145 (TID: 103079), and it has 209 rows and 67 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

69 features

pXC50 (target)numeric120 unique values
0 missing
molecule_id (row identifier)nominal209 unique values
0 missing
C.027numeric3 unique values
0 missing
C.044numeric2 unique values
0 missing
SpMAD_AEA.ed.numeric98 unique values
0 missing
nPyridinesnumeric3 unique values
0 missing
MCDnumeric74 unique values
0 missing
SssCH2numeric148 unique values
0 missing
NssCH2numeric9 unique values
0 missing
Rperimnumeric20 unique values
0 missing
nCrsnumeric8 unique values
0 missing
SpMAD_AEA.bo.numeric92 unique values
0 missing
NNRSnumeric9 unique values
0 missing
C.002numeric8 unique values
0 missing
nCsnumeric9 unique values
0 missing
RCInumeric19 unique values
0 missing
RFDnumeric19 unique values
0 missing
C.026numeric9 unique values
0 missing
nTriazolesnumeric2 unique values
0 missing
SpMin4_Bh.s.numeric146 unique values
0 missing
nABnumeric14 unique values
0 missing
JGI4numeric37 unique values
0 missing
Rbridnumeric5 unique values
0 missing
SpMin2_Bh.s.numeric88 unique values
0 missing
SpDiam_EA.ri.numeric131 unique values
0 missing
Eig01_EA.ri.numeric131 unique values
0 missing
SpMax_EA.ri.numeric131 unique values
0 missing
SpMin5_Bh.p.numeric139 unique values
0 missing
Psi_e_Anumeric162 unique values
0 missing
Psi_i_Anumeric162 unique values
0 missing
SpMax1_Bh.e.numeric116 unique values
0 missing
SpMin5_Bh.s.numeric125 unique values
0 missing
GATS2pnumeric147 unique values
0 missing
JGI5numeric29 unique values
0 missing
CATS2D_08_LLnumeric22 unique values
0 missing
CATS2D_05_ALnumeric21 unique values
0 missing
GNarnumeric87 unique values
0 missing
H.046numeric13 unique values
0 missing
MATS4vnumeric159 unique values
0 missing
SpMax3_Bh.m.numeric125 unique values
0 missing
SM15_EA.bo.numeric155 unique values
0 missing
P_VSA_e_1numeric26 unique values
0 missing
P_VSA_m_1numeric26 unique values
0 missing
P_VSA_p_1numeric38 unique values
0 missing
P_VSA_s_2numeric32 unique values
0 missing
P_VSA_v_1numeric26 unique values
0 missing
SpMin6_Bh.p.numeric128 unique values
0 missing
IVDEnumeric93 unique values
0 missing
SpMin5_Bh.v.numeric131 unique values
0 missing
N.073numeric3 unique values
0 missing
SpMax1_Bh.i.numeric108 unique values
0 missing
JGI2numeric52 unique values
0 missing
NRSnumeric5 unique values
0 missing
PW3numeric57 unique values
0 missing
SpMax5_Bh.i.numeric143 unique values
0 missing
MATS6enumeric183 unique values
0 missing
nCsp3numeric12 unique values
0 missing
SM14_EA.bo.numeric153 unique values
0 missing
CATS2D_07_LLnumeric21 unique values
0 missing
DECCnumeric124 unique values
0 missing
ATSC3mnumeric194 unique values
0 missing
P_VSA_LogP_7numeric63 unique values
0 missing
SpMin7_Bh.p.numeric128 unique values
0 missing
P_VSA_s_4numeric112 unique values
0 missing
SpMax3_Bh.v.numeric127 unique values
0 missing
SpMin5_Bh.e.numeric127 unique values
0 missing
P_VSA_s_3numeric153 unique values
0 missing
SpMax1_Bh.v.numeric124 unique values
0 missing
nRSRnumeric3 unique values
0 missing

62 properties

209
Number of instances (rows) of the dataset.
69
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
68
Number of numeric attributes.
1
Number of nominal attributes.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.84
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.71
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
22.98
Mean of means among attributes of the numeric type.
-0.2
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.13
First quartile of standard deviation of attributes of the numeric type.
0.6
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
0.22
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.33
Number of attributes divided by the number of instances.
0.32
Mean skewness among attributes of the numeric type.
2.22
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
7.79
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.25
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
-1.99
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.32
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
5.48
Maximum kurtosis among attributes of the numeric type.
-0.14
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
211.4
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.74
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.55
Percentage of numeric attributes.
7.12
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.9
Minimum skewness among attributes of the numeric type.
1.45
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.32
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.02
Third quartile of skewness among attributes of the numeric type.
72.23
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-1.1
First quartile of kurtosis among attributes of the numeric type.
2.62
Third quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task