Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5608

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5608

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5608 (TID: 101034), and it has 746 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric81 unique values
0 missing
molecule_id (row identifier)nominal746 unique values
0 missing
CATS2D_08_DPnumeric5 unique values
0 missing
CATS2D_05_DLnumeric16 unique values
0 missing
Eig10_AEA.dm.numeric493 unique values
0 missing
P_VSA_MR_6numeric644 unique values
0 missing
CATS2D_04_DLnumeric14 unique values
0 missing
Eig06_AEA.dm.numeric558 unique values
0 missing
SsNH2numeric215 unique values
0 missing
BIDnumeric136 unique values
0 missing
Dznumeric250 unique values
0 missing
HDcpxnumeric249 unique values
0 missing
IDMnumeric577 unique values
0 missing
SMTIVnumeric720 unique values
0 missing
X0solnumeric451 unique values
0 missing
GMTIVnumeric725 unique values
0 missing
SpMax7_Bh.m.numeric466 unique values
0 missing
Eig06_EA.ed.numeric620 unique values
0 missing
SM15_AEA.dm.numeric620 unique values
0 missing
Eig11_AEA.dm.numeric487 unique values
0 missing
Eig03_AEA.ed.numeric490 unique values
0 missing
SpMax3_Bh.m.numeric395 unique values
0 missing
Chi1_EA.ri.numeric709 unique values
0 missing
S0Knumeric240 unique values
0 missing
X0numeric348 unique values
0 missing
X1solnumeric604 unique values
0 missing
XMODnumeric710 unique values
0 missing
SpMax5_Bh.m.numeric481 unique values
0 missing
Eig06_AEA.ed.numeric542 unique values
0 missing
Eig11_EA.ri.numeric515 unique values
0 missing
Eig11_EA.bo.numeric501 unique values
0 missing
SpMax4_Bh.m.numeric474 unique values
0 missing
Eig09_EA.ri.numeric505 unique values
0 missing
SpAD_AEA.dm.numeric710 unique values
0 missing
Eta_betaSnumeric94 unique values
0 missing
Eig07_AEA.dm.numeric528 unique values
0 missing
ZM2Madnumeric722 unique values
0 missing
Eig09_AEA.dm.numeric511 unique values
0 missing
Eig11_EAnumeric457 unique values
0 missing
SM05_AEA.dm.numeric457 unique values
0 missing
SpMax7_Bh.s.numeric526 unique values
0 missing
X0vnumeric680 unique values
0 missing
CSInumeric508 unique values
0 missing
X2solnumeric649 unique values
0 missing
Chi0_EA.bo.numeric648 unique values
0 missing
ON1numeric251 unique values
0 missing
MDDDnumeric667 unique values
0 missing
ECCnumeric393 unique values
0 missing
Eig05_EA.ed.numeric618 unique values
0 missing
SM14_AEA.dm.numeric618 unique values
0 missing
SpMax5_Bh.p.numeric465 unique values
0 missing
CATS2D_05_PLnumeric7 unique values
0 missing
Eig06_EAnumeric485 unique values
0 missing
Eig06_EA.bo.numeric514 unique values
0 missing
SM14_AEA.bo.numeric485 unique values
0 missing
Eig03_EA.ed.numeric598 unique values
0 missing
SM12_AEA.dm.numeric598 unique values
0 missing
ZM1MulPernumeric724 unique values
0 missing
SpAD_AEA.ed.numeric678 unique values
0 missing
Eig03_AEA.ri.numeric453 unique values
0 missing
ATSC8mnumeric720 unique values
0 missing
IDETnumeric679 unique values
0 missing
IDMTnumeric681 unique values
0 missing
LPRSnumeric682 unique values
0 missing
SMTInumeric667 unique values
0 missing
UNIPnumeric199 unique values
0 missing
Xunumeric673 unique values
0 missing
Eig05_EAnumeric502 unique values
0 missing
SM13_AEA.bo.numeric502 unique values
0 missing
Chi0_EA.ri.numeric710 unique values
0 missing
SpMax6_Bh.m.numeric485 unique values
0 missing

62 properties

746
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
2.09
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
4.89
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
1181.23
Mean of means among attributes of the numeric type.
-0.83
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.49
First quartile of standard deviation of attributes of the numeric type.
0.23
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
1.09
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.1
Number of attributes divided by the number of instances.
0.19
Mean skewness among attributes of the numeric type.
5.93
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
815.33
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.2
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
-0.52
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
1.38
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
99.79
Maximum kurtosis among attributes of the numeric type.
0.12
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
31096.36
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
2.76
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.59
Percentage of numeric attributes.
31.88
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.91
Minimum skewness among attributes of the numeric type.
1.41
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
6.44
Maximum skewness among attributes of the numeric type.
0.07
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.83
Third quartile of skewness among attributes of the numeric type.
21059.75
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.14
First quartile of kurtosis among attributes of the numeric type.
12.11
Third quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task