Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3368

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3368

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3368 (TID: 12104), and it has 118 rows and 62 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

64 features

pXC50 (target)numeric94 unique values
0 missing
molecule_id (row identifier)nominal118 unique values
0 missing
SpMax1_Bh.e.numeric56 unique values
0 missing
C.017numeric4 unique values
0 missing
MPC10numeric85 unique values
0 missing
nCconjnumeric7 unique values
0 missing
nR.Ctnumeric4 unique values
0 missing
SM05_EA.ri.numeric100 unique values
0 missing
SM06_EA.ri.numeric105 unique values
0 missing
SM07_EA.ri.numeric99 unique values
0 missing
SM08_EA.ri.numeric102 unique values
0 missing
SpDiam_AEA.ri.numeric85 unique values
0 missing
C.016numeric5 unique values
0 missing
Eig01_EA.ri.numeric40 unique values
0 missing
nCIRnumeric16 unique values
0 missing
NdsCHnumeric5 unique values
0 missing
nR.Csnumeric5 unique values
0 missing
SpDiam_EA.ri.numeric40 unique values
0 missing
SpMax_EA.ri.numeric40 unique values
0 missing
H.052numeric13 unique values
0 missing
P_VSA_MR_5numeric72 unique values
0 missing
MWC09numeric85 unique values
0 missing
TWCnumeric86 unique values
0 missing
CATS2D_05_DLnumeric10 unique values
0 missing
SdsCHnumeric89 unique values
0 missing
nCrtnumeric6 unique values
0 missing
Rbridnumeric6 unique values
0 missing
SpMax1_Bh.i.numeric47 unique values
0 missing
X2Anumeric42 unique values
0 missing
SpMin1_Bh.e.numeric31 unique values
0 missing
GATS4vnumeric100 unique values
0 missing
D.Dtr10numeric75 unique values
0 missing
SpMin1_Bh.i.numeric34 unique values
0 missing
P_VSA_LogP_2numeric36 unique values
0 missing
X1Anumeric36 unique values
0 missing
nCtnumeric7 unique values
0 missing
SpMAD_EA.ri.numeric77 unique values
0 missing
SpMin1_Bh.p.numeric28 unique values
0 missing
SpMin1_Bh.s.numeric33 unique values
0 missing
MATS4vnumeric90 unique values
0 missing
Eig03_EA.ri.numeric66 unique values
0 missing
Eig01_AEA.bo.numeric39 unique values
0 missing
SpMax_AEA.bo.numeric39 unique values
0 missing
MATS4inumeric91 unique values
0 missing
SpMax1_Bh.v.numeric59 unique values
0 missing
MWC08numeric85 unique values
0 missing
C.002numeric11 unique values
0 missing
MATS1pnumeric75 unique values
0 missing
SM05_AEA.ed.numeric87 unique values
0 missing
MPC07numeric78 unique values
0 missing
SpMax1_Bh.m.numeric68 unique values
0 missing
BIC3numeric68 unique values
0 missing
C.026numeric10 unique values
0 missing
MATS1vnumeric58 unique values
0 missing
nBnznumeric5 unique values
0 missing
PW5numeric35 unique values
0 missing
S3Knumeric112 unique values
0 missing
MPC05numeric65 unique values
0 missing
nCrqnumeric3 unique values
0 missing
nCsnumeric15 unique values
0 missing
SRW07numeric14 unique values
0 missing
SRW09numeric22 unique values
0 missing
MATS1inumeric84 unique values
0 missing
CATS2D_04_LLnumeric25 unique values
0 missing

62 properties

118
Number of instances (rows) of the dataset.
64
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
63
Number of numeric attributes.
1
Number of nominal attributes.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.54
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
-0.1
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
7.79
Mean of means among attributes of the numeric type.
-0.83
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.11
First quartile of standard deviation of attributes of the numeric type.
0.13
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
-0.32
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.54
Number of attributes divided by the number of instances.
-0.22
Mean skewness among attributes of the numeric type.
3.99
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
3.19
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.49
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
-1.45
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.46
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
6.02
Maximum kurtosis among attributes of the numeric type.
-0.08
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
174.72
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.18
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.44
Percentage of numeric attributes.
5.96
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.47
Minimum skewness among attributes of the numeric type.
1.56
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.72
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.35
Third quartile of skewness among attributes of the numeric type.
116.76
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.86
First quartile of kurtosis among attributes of the numeric type.
1.8
Third quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task