Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3921

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3921

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3921 (TID: 11653), and it has 218 rows and 64 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

66 features

pXC50 (target)numeric112 unique values
0 missing
molecule_id (row identifier)nominal218 unique values
0 missing
P_VSA_e_1numeric51 unique values
0 missing
P_VSA_m_1numeric50 unique values
0 missing
P_VSA_MR_1numeric63 unique values
0 missing
P_VSA_p_1numeric68 unique values
0 missing
P_VSA_s_2numeric68 unique values
0 missing
P_VSA_v_1numeric50 unique values
0 missing
SpMin4_Bh.m.numeric129 unique values
0 missing
ATSC3vnumeric192 unique values
0 missing
P_VSA_LogP_7numeric50 unique values
0 missing
SpMin5_Bh.m.numeric116 unique values
0 missing
SpMin6_Bh.s.numeric140 unique values
0 missing
ATSC1vnumeric155 unique values
0 missing
ATSC2vnumeric161 unique values
0 missing
SpMin3_Bh.v.numeric79 unique values
0 missing
SpMin8_Bh.m.numeric126 unique values
0 missing
CATS2D_07_LLnumeric23 unique values
0 missing
SpMin2_Bh.m.numeric79 unique values
0 missing
SpMin2_Bh.s.numeric89 unique values
0 missing
SpMin2_Bh.v.numeric67 unique values
0 missing
GATS5snumeric189 unique values
0 missing
DECCnumeric161 unique values
0 missing
SpMin4_Bh.v.numeric119 unique values
0 missing
ATS4pnumeric182 unique values
0 missing
ATS5inumeric186 unique values
0 missing
ATS5pnumeric187 unique values
0 missing
ATSC3pnumeric190 unique values
0 missing
ATSC4inumeric191 unique values
0 missing
ATSC4pnumeric209 unique values
0 missing
ATSC5inumeric199 unique values
0 missing
ATSC5pnumeric210 unique values
0 missing
ATSC6inumeric196 unique values
0 missing
X4vnumeric211 unique values
0 missing
X5vnumeric207 unique values
0 missing
SM10_EA.bo.numeric151 unique values
0 missing
SpDiam_AEA.dm.numeric47 unique values
0 missing
X3Avnumeric51 unique values
0 missing
C.002numeric13 unique values
0 missing
H.046numeric18 unique values
0 missing
SpMin6_Bh.m.numeric126 unique values
0 missing
CATS2D_06_LLnumeric24 unique values
0 missing
ATS2pnumeric149 unique values
0 missing
ATS3pnumeric163 unique values
0 missing
ATS3vnumeric169 unique values
0 missing
ATSC2inumeric152 unique values
0 missing
ATSC2pnumeric161 unique values
0 missing
ATSC3inumeric169 unique values
0 missing
P_VSA_MR_5numeric97 unique values
0 missing
ATS4vnumeric176 unique values
0 missing
ATS5enumeric184 unique values
0 missing
ATS5vnumeric193 unique values
0 missing
ATS6enumeric189 unique values
0 missing
ATS6inumeric192 unique values
0 missing
ATS6pnumeric190 unique values
0 missing
ATS6vnumeric190 unique values
0 missing
ATS7enumeric198 unique values
0 missing
ATS7inumeric193 unique values
0 missing
ATS7pnumeric193 unique values
0 missing
ATS7vnumeric189 unique values
0 missing
ATS8enumeric194 unique values
0 missing
ATS8inumeric181 unique values
0 missing
ATS8pnumeric197 unique values
0 missing
ATSC1pnumeric155 unique values
0 missing
ATSC2snumeric204 unique values
0 missing
ATSC6pnumeric210 unique values
0 missing

62 properties

218
Number of instances (rows) of the dataset.
66
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
65
Number of numeric attributes.
1
Number of nominal attributes.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
2.37
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
2.16
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
41.12
Mean of means among attributes of the numeric type.
0.96
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.57
First quartile of standard deviation of attributes of the numeric type.
0.36
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
0.91
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.3
Number of attributes divided by the number of instances.
1.04
Mean skewness among attributes of the numeric type.
5.04
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
32.01
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
1.24
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
-0.92
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.92
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
32.97
Maximum kurtosis among attributes of the numeric type.
0.09
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
299.11
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
2.15
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.48
Percentage of numeric attributes.
12.91
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-5.07
Minimum skewness among attributes of the numeric type.
1.52
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.33
Maximum skewness among attributes of the numeric type.
0.02
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.8
Third quartile of skewness among attributes of the numeric type.
445.6
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.22
First quartile of kurtosis among attributes of the numeric type.
9.52
Third quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task