Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2274

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2274

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2274 (TID: 12023), and it has 283 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric183 unique values
0 missing
molecule_id (row identifier)nominal283 unique values
0 missing
IDEnumeric185 unique values
0 missing
MSDnumeric201 unique values
0 missing
AECCnumeric193 unique values
0 missing
IACnumeric209 unique values
0 missing
TIC0numeric209 unique values
0 missing
HVcpxnumeric179 unique values
0 missing
SAdonnumeric37 unique values
0 missing
VARnumeric97 unique values
0 missing
SpMax5_Bh.e.numeric171 unique values
0 missing
nROHnumeric5 unique values
0 missing
NsOHnumeric5 unique values
0 missing
SsOHnumeric167 unique values
0 missing
SpMax5_Bh.i.numeric162 unique values
0 missing
P_VSA_v_2numeric126 unique values
0 missing
ATS8enumeric227 unique values
0 missing
TIC4numeric203 unique values
0 missing
TIC5numeric201 unique values
0 missing
TIC3numeric220 unique values
0 missing
RBNnumeric19 unique values
0 missing
TPSA.Tot.numeric97 unique values
0 missing
X1vnumeric242 unique values
0 missing
Spnumeric207 unique values
0 missing
ATS3enumeric218 unique values
0 missing
SpMax5_Bh.v.numeric183 unique values
0 missing
ATS2inumeric200 unique values
0 missing
CATS2D_07_NLnumeric3 unique values
0 missing
CATS2D_01_ANnumeric3 unique values
0 missing
CATS2D_01_DNnumeric3 unique values
0 missing
SAaccnumeric123 unique values
0 missing
SAtotnumeric239 unique values
0 missing
ECCnumeric159 unique values
0 missing
SpMin3_Bh.s.numeric159 unique values
0 missing
X1Pernumeric235 unique values
0 missing
ATS2snumeric226 unique values
0 missing
P_VSA_e_5numeric53 unique values
0 missing
ATS7pnumeric218 unique values
0 missing
P_VSA_m_3numeric79 unique values
0 missing
P_VSA_p_2numeric98 unique values
0 missing
VvdwMGnumeric213 unique values
0 missing
Vxnumeric213 unique values
0 missing
Eta_epsinumeric190 unique values
0 missing
X1MulPernumeric234 unique values
0 missing
SpMax8_Bh.i.numeric150 unique values
0 missing
SpMax4_Bh.p.numeric178 unique values
0 missing
S1Knumeric208 unique values
0 missing
P_VSA_p_1numeric69 unique values
0 missing
SpMin3_Bh.i.numeric135 unique values
0 missing
SpMax6_Bh.e.numeric165 unique values
0 missing
SpMax6_Bh.v.numeric181 unique values
0 missing
ATS8inumeric225 unique values
0 missing
TIC1numeric226 unique values
0 missing
VvdwZAZnumeric214 unique values
0 missing
nFuranesnumeric2 unique values
0 missing
LLS_01numeric6 unique values
0 missing
Svnumeric214 unique values
0 missing
CSInumeric177 unique values
0 missing
ATS1mnumeric191 unique values
0 missing
MATS2snumeric197 unique values
0 missing
UNIPnumeric103 unique values
0 missing
ATSC2enumeric205 unique values
0 missing
ATS5enumeric219 unique values
0 missing
nCsp3numeric21 unique values
0 missing
ATS6inumeric225 unique values
0 missing
SpMax6_Bh.i.numeric158 unique values
0 missing
ATS8pnumeric219 unique values
0 missing

62 properties

283
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
3.41
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.82
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
82.95
Mean of means among attributes of the numeric type.
-0.27
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.21
First quartile of standard deviation of attributes of the numeric type.
-0.15
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
0.76
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.24
Number of attributes divided by the number of instances.
0.06
Mean skewness among attributes of the numeric type.
7.67
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
18.13
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.01
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
-1.79
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
1.21
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
8.11
Maximum kurtosis among attributes of the numeric type.
0.08
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
785.26
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.31
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.51
Percentage of numeric attributes.
100.11
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.21
Minimum skewness among attributes of the numeric type.
1.49
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
3.17
Maximum skewness among attributes of the numeric type.
0.09
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.29
Third quartile of skewness among attributes of the numeric type.
219.34
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.1
First quartile of kurtosis among attributes of the numeric type.
35.61
Third quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task