Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2758

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2758

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2758 (TID: 11872), and it has 727 rows and 70 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

72 features

pXC50 (target)numeric248 unique values
0 missing
molecule_id (row identifier)nominal727 unique values
0 missing
SpMin3_Bh.i.numeric445 unique values
0 missing
SpMin4_Bh.m.numeric432 unique values
0 missing
SpMin6_Bh.v.numeric437 unique values
0 missing
ATS2inumeric530 unique values
0 missing
SpMin4_Bh.e.numeric426 unique values
0 missing
SpMin5_Bh.i.numeric425 unique values
0 missing
SpMin3_Bh.e.numeric437 unique values
0 missing
SpMax5_Bh.i.numeric441 unique values
0 missing
SpMin4_Bh.v.numeric415 unique values
0 missing
SpMin6_Bh.m.numeric441 unique values
0 missing
SpMin8_Bh.e.numeric366 unique values
0 missing
SpMin4_Bh.i.numeric430 unique values
0 missing
SpMin3_Bh.p.numeric409 unique values
0 missing
Mpnumeric205 unique values
0 missing
SpMax5_Bh.p.numeric427 unique values
0 missing
SpMin5_Bh.v.numeric445 unique values
0 missing
SpMax5_Bh.e.numeric458 unique values
0 missing
SpMax5_Bh.v.numeric458 unique values
0 missing
TIC2numeric648 unique values
0 missing
SpMin4_Bh.s.numeric430 unique values
0 missing
TIC3numeric585 unique values
0 missing
SpMax3_Bh.p.numeric481 unique values
0 missing
ATS1inumeric502 unique values
0 missing
SpMin3_Bh.v.numeric419 unique values
0 missing
SpMin5_Bh.e.numeric428 unique values
0 missing
SpMax3_Bh.v.numeric482 unique values
0 missing
MDDDnumeric621 unique values
0 missing
SpMin8_Bh.m.numeric422 unique values
0 missing
CSInumeric432 unique values
0 missing
IDMTnumeric661 unique values
0 missing
SpMin6_Bh.e.numeric414 unique values
0 missing
Chi1_EA.ed.numeric607 unique values
0 missing
SpMin5_Bh.p.numeric455 unique values
0 missing
Sinumeric648 unique values
0 missing
Eta_betaSnumeric72 unique values
0 missing
TIC1numeric653 unique values
0 missing
AECCnumeric468 unique values
0 missing
nBTnumeric56 unique values
0 missing
SpMin8_Bh.v.numeric423 unique values
0 missing
ATS2enumeric524 unique values
0 missing
UNIPnumeric135 unique values
0 missing
ECCnumeric281 unique values
0 missing
Eig11_EA.bo.numeric524 unique values
0 missing
ATS5inumeric599 unique values
0 missing
Xunumeric647 unique values
0 missing
Chi1_EA.ri.numeric701 unique values
0 missing
nHnumeric32 unique values
0 missing
RDCHInumeric553 unique values
0 missing
SpMin6_Bh.p.numeric440 unique values
0 missing
ATS3enumeric532 unique values
0 missing
P_VSA_m_2numeric670 unique values
0 missing
SpMin4_Bh.p.numeric403 unique values
0 missing
ATS3inumeric540 unique values
0 missing
SpMax6_Bh.i.numeric433 unique values
0 missing
VARnumeric140 unique values
0 missing
ON1numeric225 unique values
0 missing
SpMax4_Bh.i.numeric442 unique values
0 missing
LPRSnumeric661 unique values
0 missing
ON0Vnumeric438 unique values
0 missing
Chi0_EA.ed.numeric631 unique values
0 missing
ISIZnumeric54 unique values
0 missing
nATnumeric54 unique values
0 missing
SpMin8_Bh.i.numeric354 unique values
0 missing
SpMin3_Bh.s.numeric451 unique values
0 missing
ATS1enumeric488 unique values
0 missing
SpMin7_Bh.v.numeric427 unique values
0 missing
ON1Vnumeric587 unique values
0 missing
CIC0numeric534 unique values
0 missing
Svnumeric650 unique values
0 missing
SssNHnumeric253 unique values
0 missing

62 properties

727
Number of instances (rows) of the dataset.
72
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
71
Number of numeric attributes.
1
Number of nominal attributes.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.3
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.49
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
161.25
Mean of means among attributes of the numeric type.
-0.89
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.27
First quartile of standard deviation of attributes of the numeric type.
0.66
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
0.12
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.1
Number of attributes divided by the number of instances.
-0.22
Mean skewness among attributes of the numeric type.
3.38
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
114.48
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.45
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
-1.04
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.39
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
3.79
Maximum kurtosis among attributes of the numeric type.
-0.11
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
9475.57
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
1.13
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.61
Percentage of numeric attributes.
14.79
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.39
Minimum skewness among attributes of the numeric type.
1.39
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
1.95
Maximum skewness among attributes of the numeric type.
0.06
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.35
Third quartile of skewness among attributes of the numeric type.
7381.54
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-0.31
First quartile of kurtosis among attributes of the numeric type.
4.72
Third quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task