Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL401

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL401

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL401 (TID: 100000), and it has 143 rows and 67 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

69 features

pXC50 (target)numeric79 unique values
0 missing
molecule_id (row identifier)nominal143 unique values
0 missing
C.016numeric4 unique values
0 missing
NdsCHnumeric4 unique values
0 missing
nR.Csnumeric4 unique values
0 missing
SdsCHnumeric20 unique values
0 missing
SpMin1_Bh.s.numeric90 unique values
0 missing
JGI4numeric52 unique values
0 missing
ATSC6pnumeric133 unique values
0 missing
nCrsnumeric9 unique values
0 missing
N.numeric67 unique values
0 missing
ATSC5pnumeric134 unique values
0 missing
Hynumeric98 unique values
0 missing
CATS2D_06_LLnumeric23 unique values
0 missing
CATS2D_03_AAnumeric5 unique values
0 missing
Eta_sh_ynumeric101 unique values
0 missing
BIC3numeric90 unique values
0 missing
Eig01_EA.ri.numeric90 unique values
0 missing
SpDiam_EA.ri.numeric92 unique values
0 missing
SpMax_EA.ri.numeric90 unique values
0 missing
SM09_EA.ri.numeric118 unique values
0 missing
P_VSA_LogP_6numeric23 unique values
0 missing
Eta_C_Anumeric123 unique values
0 missing
H.050numeric10 unique values
0 missing
nHDonnumeric10 unique values
0 missing
SAdonnumeric31 unique values
0 missing
SpMin2_Bh.m.numeric98 unique values
0 missing
SpMin1_Bh.m.numeric79 unique values
0 missing
ATSC6vnumeric133 unique values
0 missing
MCDnumeric57 unique values
0 missing
P_VSA_e_3numeric37 unique values
0 missing
ATSC5vnumeric133 unique values
0 missing
nCsnumeric16 unique values
0 missing
SpMin1_Bh.v.numeric79 unique values
0 missing
MPC10numeric73 unique values
0 missing
X5vnumeric131 unique values
0 missing
SM05_EA.ri.numeric111 unique values
0 missing
SM04_AEA.ed.numeric107 unique values
0 missing
MWC07numeric106 unique values
0 missing
PCDnumeric114 unique values
0 missing
SM05_EAnumeric59 unique values
0 missing
SM07_EA.ri.numeric115 unique values
0 missing
SM05_AEA.ed.numeric108 unique values
0 missing
DBInumeric40 unique values
0 missing
Eig03_EA.bo.numeric105 unique values
0 missing
SM13_AEA.ri.numeric105 unique values
0 missing
SM08_EA.ri.numeric130 unique values
0 missing
SpMin3_Bh.i.numeric99 unique values
0 missing
Eig01_AEA.ed.numeric79 unique values
0 missing
SpMax_AEA.ed.numeric79 unique values
0 missing
SssssCnumeric42 unique values
0 missing
CATS2D_05_LLnumeric23 unique values
0 missing
MATS1mnumeric88 unique values
0 missing
SM03_EA.ri.numeric84 unique values
0 missing
CIC3numeric115 unique values
0 missing
MWC08numeric109 unique values
0 missing
SM15_EA.ri.numeric125 unique values
0 missing
Eig02_EA.ed.numeric94 unique values
0 missing
SM11_AEA.dm.numeric94 unique values
0 missing
GATS3snumeric122 unique values
0 missing
ATS6inumeric127 unique values
0 missing
MWC09numeric109 unique values
0 missing
SM06_AEA.ed.numeric110 unique values
0 missing
SM08_AEA.ed.numeric110 unique values
0 missing
SM07_AEA.ed.numeric107 unique values
0 missing
SpMin3_Bh.v.numeric105 unique values
0 missing
P_VSA_i_4numeric43 unique values
0 missing
D.Dtr05numeric66 unique values
0 missing
SpMin3_Bh.m.numeric104 unique values
0 missing

62 properties

143
Number of instances (rows) of the dataset.
69
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
68
Number of numeric attributes.
1
Number of nominal attributes.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.58
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
6.46
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
8.24
Mean of means among attributes of the numeric type.
0.1
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.32
First quartile of standard deviation of attributes of the numeric type.
0.04
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
2.56
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.48
Number of attributes divided by the number of instances.
1.2
Mean skewness among attributes of the numeric type.
4.26
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
10.64
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.65
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
-1.2
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.69
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
36.09
Maximum kurtosis among attributes of the numeric type.
-0.35
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
72.72
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
6.09
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.55
Percentage of numeric attributes.
9.87
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-3.84
Minimum skewness among attributes of the numeric type.
1.45
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
5.82
Maximum skewness among attributes of the numeric type.
0.02
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
2.44
Third quartile of skewness among attributes of the numeric type.
190.43
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.45
First quartile of kurtosis among attributes of the numeric type.
2.31
Third quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task