Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2329

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2329

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2329 (TID: 10094), and it has 184 rows and 61 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

63 features

pXC50 (target)numeric105 unique values
0 missing
molecule_id (row identifier)nominal184 unique values
0 missing
CATS2D_04_PLnumeric6 unique values
0 missing
GATS4snumeric124 unique values
0 missing
MPC04numeric49 unique values
0 missing
SM07_EAnumeric94 unique values
0 missing
SM04_AEA.ed.numeric99 unique values
0 missing
SM05_EAnumeric51 unique values
0 missing
piPC07numeric110 unique values
0 missing
SM06_AEA.bo.numeric96 unique values
0 missing
SM07_AEA.bo.numeric111 unique values
0 missing
SpMin3_Bh.p.numeric103 unique values
0 missing
Eig06_AEA.ed.numeric84 unique values
0 missing
C.028numeric2 unique values
0 missing
CATS2D_04_DLnumeric8 unique values
0 missing
MWC06numeric103 unique values
0 missing
SpMin2_Bh.e.numeric83 unique values
0 missing
ATSC3mnumeric134 unique values
0 missing
SpMin2_Bh.i.numeric88 unique values
0 missing
SpMin1_Bh.i.numeric68 unique values
0 missing
SRW10numeric103 unique values
0 missing
Eig06_AEA.ri.numeric94 unique values
0 missing
Eig06_EAnumeric77 unique values
0 missing
SM14_AEA.bo.numeric77 unique values
0 missing
SpMin3_Bh.v.numeric97 unique values
0 missing
SM05_AEA.bo.numeric95 unique values
0 missing
GATS4enumeric127 unique values
0 missing
SM05_AEA.ed.numeric99 unique values
0 missing
SM06_AEA.ed.numeric102 unique values
0 missing
SM06_EAnumeric99 unique values
0 missing
SM07_AEA.ed.numeric103 unique values
0 missing
SM08_AEA.ed.numeric104 unique values
0 missing
ATS2pnumeric108 unique values
0 missing
Eig06_EA.ri.numeric94 unique values
0 missing
Eig06_EA.ed.numeric85 unique values
0 missing
SM15_AEA.dm.numeric85 unique values
0 missing
Eig01_EA.bo.numeric74 unique values
0 missing
SM11_AEA.ri.numeric74 unique values
0 missing
SpDiam_EA.bo.numeric74 unique values
0 missing
SpMax_EA.bo.numeric74 unique values
0 missing
SpMin2_Bh.v.numeric93 unique values
0 missing
SM04_AEA.bo.numeric93 unique values
0 missing
SpMax3_Bh.i.numeric103 unique values
0 missing
SM11_EAnumeric100 unique values
0 missing
SM12_AEA.ed.numeric103 unique values
0 missing
Eig06_EA.bo.numeric87 unique values
0 missing
SaaNnumeric127 unique values
0 missing
C.034numeric3 unique values
0 missing
N.073numeric2 unique values
0 missing
NaaaCnumeric3 unique values
0 missing
NNRSnumeric5 unique values
0 missing
nPyrrolesnumeric2 unique values
0 missing
RCInumeric7 unique values
0 missing
RFDnumeric7 unique values
0 missing
SaaaCnumeric58 unique values
0 missing
X3Anumeric40 unique values
0 missing
SpMax1_Bh.e.numeric89 unique values
0 missing
SM14_EA.bo.numeric107 unique values
0 missing
MWC05numeric100 unique values
0 missing
SRW08numeric100 unique values
0 missing
Eig05_EAnumeric77 unique values
0 missing
SM13_AEA.bo.numeric77 unique values
0 missing
Ramnumeric10 unique values
0 missing

62 properties

184
Number of instances (rows) of the dataset.
63
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
62
Number of numeric attributes.
1
Number of nominal attributes.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.76
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.31
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
5.69
Mean of means among attributes of the numeric type.
-0.92
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.23
First quartile of standard deviation of attributes of the numeric type.
0.22
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
0.52
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.34
Number of attributes divided by the number of instances.
-0.2
Mean skewness among attributes of the numeric type.
4.2
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
0.52
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.69
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
-1.29
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.29
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
37.79
Maximum kurtosis among attributes of the numeric type.
0.06
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
23.31
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.8
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.41
Percentage of numeric attributes.
8.44
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.45
Minimum skewness among attributes of the numeric type.
1.59
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.83
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.43
Third quartile of skewness among attributes of the numeric type.
5.86
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.21
First quartile of kurtosis among attributes of the numeric type.
0.49
Third quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task