Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2219

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2219

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2219 (TID: 11521), and it has 674 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric300 unique values
0 missing
molecule_id (row identifier)nominal674 unique values
0 missing
nCsp2numeric31 unique values
0 missing
Uinumeric36 unique values
0 missing
Eig07_EA.bo.numeric485 unique values
0 missing
Eta_betaPnumeric62 unique values
0 missing
Eig06_EA.bo.numeric493 unique values
0 missing
piIDnumeric590 unique values
0 missing
Eig03_EA.bo.numeric483 unique values
0 missing
SM13_AEA.ri.numeric483 unique values
0 missing
Eta_betanumeric164 unique values
0 missing
C.numeric151 unique values
0 missing
PCDnumeric582 unique values
0 missing
SpMaxA_AEA.ed.numeric232 unique values
0 missing
Eta_FLnumeric606 unique values
0 missing
piPC03numeric420 unique values
0 missing
piPC02numeric252 unique values
0 missing
SM02_EA.bo.numeric252 unique values
0 missing
Eig05_EA.bo.numeric522 unique values
0 missing
SM15_AEA.ri.numeric522 unique values
0 missing
Eig12_AEA.bo.numeric452 unique values
0 missing
Eig09_AEA.bo.numeric454 unique values
0 missing
Eig07_AEA.bo.numeric460 unique values
0 missing
Eig15_AEA.dm.numeric497 unique values
0 missing
SpMaxA_EAnumeric138 unique values
0 missing
SpMaxA_EA.ed.numeric312 unique values
0 missing
piPC05numeric551 unique values
0 missing
piPC08numeric581 unique values
0 missing
Eig09_EA.bo.numeric470 unique values
0 missing
piPC01numeric92 unique values
0 missing
SCBOnumeric92 unique values
0 missing
Eig08_AEA.bo.numeric463 unique values
0 missing
Eig12_AEA.ri.numeric476 unique values
0 missing
S0Knumeric228 unique values
0 missing
SpMaxA_AEA.ri.numeric167 unique values
0 missing
Eig15_AEA.bo.numeric458 unique values
0 missing
Eig12_EA.ri.numeric466 unique values
0 missing
nBMnumeric33 unique values
0 missing
Ucnumeric33 unique values
0 missing
Eig12_EAnumeric424 unique values
0 missing
SM06_AEA.dm.numeric424 unique values
0 missing
ZM2Kupnumeric653 unique values
0 missing
piPC04numeric519 unique values
0 missing
SpMaxA_AEA.bo.numeric171 unique values
0 missing
piPC06numeric542 unique values
0 missing
SpAD_EA.bo.numeric635 unique values
0 missing
ZM2Pernumeric657 unique values
0 missing
ZM2Vnumeric345 unique values
0 missing
Eig08_EAnumeric444 unique values
0 missing
SM02_AEA.dm.numeric444 unique values
0 missing
Chi1_EA.ed.numeric579 unique values
0 missing
Eig13_AEA.bo.numeric435 unique values
0 missing
Eig08_AEA.ed.numeric502 unique values
0 missing
ZM2MulPernumeric659 unique values
0 missing
Eig05_AEA.bo.numeric485 unique values
0 missing
Minumeric73 unique values
0 missing
nCnumeric33 unique values
0 missing
Eig12_EA.bo.numeric466 unique values
0 missing
SpMax6_Bh.m.numeric449 unique values
0 missing
piPC07numeric568 unique values
0 missing
Eig09_AEA.ri.numeric492 unique values
0 missing
Eig14_AEA.bo.numeric454 unique values
0 missing
Eig07_AEA.ed.numeric491 unique values
0 missing
Eta_Fnumeric663 unique values
0 missing
P_VSA_e_2numeric637 unique values
0 missing
SM02_AEA.bo.numeric344 unique values
0 missing
C.028numeric6 unique values
0 missing
ZM1Pernumeric654 unique values
0 missing
Eig06_AEA.bo.numeric468 unique values
0 missing
Eig08_EA.ed.numeric535 unique values
0 missing
SM03_AEA.ri.numeric535 unique values
0 missing

62 properties

674
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.18
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
1.64
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
43.64
Mean of means among attributes of the numeric type.
-1.05
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.54
First quartile of standard deviation of attributes of the numeric type.
0.23
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
1.21
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.11
Number of attributes divided by the number of instances.
-0.23
Mean skewness among attributes of the numeric type.
3.25
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
13.51
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.25
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
-1.17
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
0.81
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
5.94
Maximum kurtosis among attributes of the numeric type.
-0.1
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
612.06
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
3.05
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.59
Percentage of numeric attributes.
7.24
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-1.75
Minimum skewness among attributes of the numeric type.
1.41
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
2.55
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.41
Third quartile of skewness among attributes of the numeric type.
192.77
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.21
First quartile of kurtosis among attributes of the numeric type.
1.96
Third quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task