Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4608

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4608

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4608 (TID: 11006), and it has 692 rows and 68 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

70 features

pXC50 (target)numeric382 unique values
0 missing
molecule_id (row identifier)nominal692 unique values
0 missing
GATS1inumeric334 unique values
0 missing
Eig05_EA.dm.numeric110 unique values
0 missing
CATS2D_09_DLnumeric41 unique values
0 missing
C.numeric123 unique values
0 missing
CATS2D_06_DLnumeric34 unique values
0 missing
SM05_EA.bo.numeric388 unique values
0 missing
CATS2D_02_DAnumeric24 unique values
0 missing
SpAD_EA.dm.numeric279 unique values
0 missing
CATS2D_09_DDnumeric21 unique values
0 missing
ATSC1snumeric580 unique values
0 missing
CATS2D_08_DLnumeric36 unique values
0 missing
Eig14_EA.dm.numeric50 unique values
0 missing
Eig07_EAnumeric353 unique values
0 missing
SM15_AEA.bo.numeric353 unique values
0 missing
HNarnumeric219 unique values
0 missing
MWnumeric521 unique values
0 missing
Uindexnumeric529 unique values
0 missing
CATS2D_03_DLnumeric33 unique values
0 missing
P_VSA_MR_5numeric427 unique values
0 missing
ZM1Vnumeric316 unique values
0 missing
ATSC4snumeric616 unique values
0 missing
IACnumeric513 unique values
0 missing
TIC0numeric513 unique values
0 missing
SpMax8_Bh.m.numeric432 unique values
0 missing
X0solnumeric414 unique values
0 missing
CATS2D_09_APnumeric8 unique values
0 missing
GMTIVnumeric605 unique values
0 missing
Eig15_EA.dm.numeric47 unique values
0 missing
Eig13_EA.dm.numeric58 unique values
0 missing
SpMax7_Bh.m.numeric387 unique values
0 missing
CMC.80numeric2 unique values
0 missing
X0vnumeric552 unique values
0 missing
MATS5snumeric288 unique values
0 missing
Eig12_EA.dm.numeric63 unique values
0 missing
ATSC8mnumeric613 unique values
0 missing
Eig09_EA.dm.numeric62 unique values
0 missing
Eig10_EA.dm.numeric69 unique values
0 missing
Eig11_EA.dm.numeric65 unique values
0 missing
nNnumeric31 unique values
0 missing
Infective.80numeric2 unique values
0 missing
UNIPnumeric322 unique values
0 missing
X2solnumeric521 unique values
0 missing
ON0numeric252 unique values
0 missing
NdOnumeric22 unique values
0 missing
O.058numeric22 unique values
0 missing
X0Anumeric67 unique values
0 missing
Eta_Lnumeric589 unique values
0 missing
ATSC4enumeric514 unique values
0 missing
ATS1mnumeric455 unique values
0 missing
Eta_betaS_Anumeric84 unique values
0 missing
CSInumeric482 unique values
0 missing
SAtotnumeric568 unique values
0 missing
DLS_01numeric4 unique values
0 missing
ZM2MulPernumeric598 unique values
0 missing
VvdwZAZnumeric528 unique values
0 missing
Psi_i_snumeric493 unique values
0 missing
SMTInumeric532 unique values
0 missing
P_VSA_LogP_4numeric124 unique values
0 missing
MDDDnumeric530 unique values
0 missing
NaaaCnumeric3 unique values
0 missing
Eta_Cnumeric616 unique values
0 missing
AMRnumeric596 unique values
0 missing
ATS8pnumeric527 unique values
0 missing
MSDnumeric513 unique values
0 missing
ON0Vnumeric474 unique values
0 missing
CATS2D_05_ALnumeric26 unique values
0 missing
ATS2snumeric496 unique values
0 missing
TIC1numeric573 unique values
0 missing

62 properties

692
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
69
Number of numeric attributes.
1
Number of nominal attributes.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.47
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
2.59
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
5170.57
Mean of means among attributes of the numeric type.
0.55
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.55
First quartile of standard deviation of attributes of the numeric type.
0.09
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
1.41
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.1
Number of attributes divided by the number of instances.
1.32
Mean skewness among attributes of the numeric type.
8.69
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
9630.82
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
1.47
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
-1.5
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
5.86
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
27.26
Maximum kurtosis among attributes of the numeric type.
0.06
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
258883.53
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
2.58
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.57
Percentage of numeric attributes.
117.14
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-0.71
Minimum skewness among attributes of the numeric type.
1.43
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
4.23
Maximum skewness among attributes of the numeric type.
0.02
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
1.77
Third quartile of skewness among attributes of the numeric type.
494342.61
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
0.17
First quartile of kurtosis among attributes of the numeric type.
88.28
Third quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task