Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4883

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4883

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4883 (TID: 10179), and it has 34 rows and 62 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

64 features

pXC50 (target)numeric26 unique values
0 missing
molecule_id (row identifier)nominal34 unique values
0 missing
ATS1enumeric25 unique values
0 missing
ATS1snumeric28 unique values
0 missing
ATS1vnumeric26 unique values
0 missing
ATS2enumeric26 unique values
0 missing
ATS2inumeric24 unique values
0 missing
ATS2pnumeric28 unique values
0 missing
ATS2vnumeric28 unique values
0 missing
ATS3enumeric27 unique values
0 missing
ATS3pnumeric30 unique values
0 missing
ATS3vnumeric29 unique values
0 missing
ATS4enumeric30 unique values
0 missing
ATS4pnumeric31 unique values
0 missing
ATS4snumeric31 unique values
0 missing
ATS4vnumeric31 unique values
0 missing
ATS5enumeric31 unique values
0 missing
ATS5inumeric31 unique values
0 missing
ATS5pnumeric30 unique values
0 missing
ATS5snumeric31 unique values
0 missing
ATS5vnumeric31 unique values
0 missing
ATS8snumeric31 unique values
0 missing
ATSC1pnumeric26 unique values
0 missing
ATSC2pnumeric28 unique values
0 missing
ATSC2snumeric31 unique values
0 missing
ATSC2vnumeric27 unique values
0 missing
ATSC3pnumeric29 unique values
0 missing
ATSC5mnumeric31 unique values
0 missing
ATSC5pnumeric31 unique values
0 missing
ATSC6enumeric31 unique values
0 missing
ATSC6pnumeric31 unique values
0 missing
ATSC7enumeric28 unique values
0 missing
ATSC8enumeric31 unique values
0 missing
ATSC8snumeric31 unique values
0 missing
BIDnumeric17 unique values
0 missing
CATS2D_08_ALnumeric13 unique values
0 missing
CATS2D_09_ALnumeric14 unique values
0 missing
Chi0_AEA.bo.numeric27 unique values
0 missing
Chi0_AEA.dm.numeric27 unique values
0 missing
Chi0_AEA.ed.numeric27 unique values
0 missing
Chi0_AEA.ri.numeric27 unique values
0 missing
Chi0_EAnumeric27 unique values
0 missing
Chi0_EA.bo.numeric29 unique values
0 missing
Chi0_EA.dm.numeric24 unique values
0 missing
Chi1_EA.dm.numeric25 unique values
0 missing
CIDnumeric25 unique values
0 missing
CSInumeric31 unique values
0 missing
DBInumeric21 unique values
0 missing
Dznumeric23 unique values
0 missing
ECCnumeric31 unique values
0 missing
Eig03_AEA.ri.numeric28 unique values
0 missing
Eig03_EAnumeric25 unique values
0 missing
Eig03_EA.ri.numeric28 unique values
0 missing
Eig04_AEA.dm.numeric20 unique values
0 missing
Eig05_AEA.dm.numeric25 unique values
0 missing
Eig05_AEA.ed.numeric24 unique values
0 missing
Eig05_EA.ed.numeric27 unique values
0 missing
Eig06_AEA.dm.numeric26 unique values
0 missing
Eig06_EA.ri.numeric28 unique values
0 missing
Eig07_AEA.dm.numeric24 unique values
0 missing
Eig08_AEA.dm.numeric24 unique values
0 missing
Eig09_AEA.dm.numeric24 unique values
0 missing
Eig13_AEA.dm.numeric22 unique values
0 missing
Eig14_AEA.dm.numeric27 unique values
0 missing

62 properties

34
Number of instances (rows) of the dataset.
64
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
63
Number of numeric attributes.
1
Number of nominal attributes.
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
3.73
First quartile of means among attributes of the numeric type.
Standard deviation of the number of distinct values among attributes of the nominal type.
0.05
Mean kurtosis among attributes of the numeric type.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
54.22
Mean of means among attributes of the numeric type.
-0.41
First quartile of skewness among attributes of the numeric type.
Average mutual information between the nominal attributes and the target attribute.
0.65
First quartile of standard deviation of attributes of the numeric type.
0.06
Average class difference between consecutive instances.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
Second quartile (Median) of entropy among attributes.
Entropy of the target attribute values.
Average number of distinct values among the attributes of the nominal type.
-0.69
Second quartile (Median) of kurtosis among attributes of the numeric type.
1.88
Number of attributes divided by the number of instances.
-0.07
Mean skewness among attributes of the numeric type.
5.25
Second quartile (Median) of means among attributes of the numeric type.
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
46.96
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.04
Second quartile (Median) of skewness among attributes of the numeric type.
Number of instances belonging to the most frequent class.
-1.36
Minimum kurtosis among attributes of the numeric type.
0
Percentage of binary attributes.
1.13
Second quartile (Median) of standard deviation of attributes of the numeric type.
Maximum entropy among attributes.
6.96
Maximum kurtosis among attributes of the numeric type.
1.57
Minimum of means among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
1510.18
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of missing values.
0.14
Third quartile of kurtosis among attributes of the numeric type.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
98.44
Percentage of numeric attributes.
17.73
Third quartile of means among attributes of the numeric type.
The maximum number of distinct values among attributes of the nominal type.
-2.56
Minimum skewness among attributes of the numeric type.
1.56
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
1.28
Maximum skewness among attributes of the numeric type.
0.3
Minimum standard deviation of attributes of the numeric type.
First quartile of entropy among attributes.
0.67
Third quartile of skewness among attributes of the numeric type.
1350.87
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
-1.14
First quartile of kurtosis among attributes of the numeric type.
11.15
Third quartile of standard deviation of attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task