Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1795119

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1795119

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1795119 (TID: 104199), and it has 10 rows and 52 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

54 features

pXC50 (target)numeric9 unique values
0 missing
molecule_id (row identifier)nominal10 unique values
0 missing
GATS3mnumeric10 unique values
0 missing
GATS3pnumeric10 unique values
0 missing
GATS4pnumeric10 unique values
0 missing
GATS4snumeric10 unique values
0 missing
MATS1enumeric10 unique values
0 missing
MATS1snumeric8 unique values
0 missing
AACnumeric6 unique values
0 missing
AECCnumeric4 unique values
0 missing
ALOGPnumeric10 unique values
0 missing
ALOGP2numeric10 unique values
0 missing
AMRnumeric10 unique values
0 missing
AMWnumeric10 unique values
0 missing
ARRnumeric4 unique values
0 missing
ATS1enumeric10 unique values
0 missing
ATS1inumeric10 unique values
0 missing
ATS1mnumeric10 unique values
0 missing
ATS1pnumeric10 unique values
0 missing
ATS1snumeric9 unique values
0 missing
ATS1vnumeric10 unique values
0 missing
ATS2enumeric10 unique values
0 missing
ATS2inumeric10 unique values
0 missing
ATS2mnumeric10 unique values
0 missing
ATS2pnumeric10 unique values
0 missing
ATS2snumeric10 unique values
0 missing
ATS2vnumeric10 unique values
0 missing
ATS3enumeric10 unique values
0 missing
ATS3inumeric10 unique values
0 missing
ATS3mnumeric10 unique values
0 missing
ATS3pnumeric10 unique values
0 missing
ATS3snumeric10 unique values
0 missing
ATS3vnumeric10 unique values
0 missing
ATS4enumeric10 unique values
0 missing
ATS4inumeric10 unique values
0 missing
ATS4mnumeric9 unique values
0 missing
ATS4pnumeric10 unique values
0 missing
ATS4snumeric10 unique values
0 missing
ATS4vnumeric10 unique values
0 missing
ATS5enumeric10 unique values
0 missing
ATS5inumeric10 unique values
0 missing
ATS5mnumeric10 unique values
0 missing
ATS5pnumeric10 unique values
0 missing
ATS5snumeric10 unique values
0 missing
ATS5vnumeric10 unique values
0 missing
ATS6enumeric10 unique values
0 missing
ATS6inumeric10 unique values
0 missing
ATS6mnumeric10 unique values
0 missing
ATS6pnumeric10 unique values
0 missing
ATS6snumeric10 unique values
0 missing
ATS6vnumeric10 unique values
0 missing
ATS7enumeric10 unique values
0 missing
ATS7inumeric9 unique values
0 missing
ATS7mnumeric10 unique values
0 missing

107 properties

10
Number of instances (rows) of the dataset.
54
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
53
Number of numeric attributes.
1
Number of nominal attributes.
0.02
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
6.06
Third quartile of kurtosis among attributes of the numeric type.
0.6
Average class difference between consecutive instances.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
2.88
Maximum skewness among attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
98.15
Percentage of numeric attributes.
4.45
Third quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
16.08
Maximum standard deviation of attributes of the numeric type.
Number of instances belonging to the least frequent class.
1.85
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
3.62
Mean kurtosis among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
2.27
Third quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
5.94
Mean of means among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
1.69
First quartile of kurtosis among attributes of the numeric type.
0.29
Third quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
3.44
First quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
Average number of distinct values among the attributes of the nominal type.
0.33
First quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Standard deviation of the number of distinct values among attributes of the nominal type.
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
1.23
Mean skewness among attributes of the numeric type.
0.15
First quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.77
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
3.13
Second quartile (Median) of kurtosis among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Entropy of the target attribute values.
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
Number of instances belonging to the most frequent class.
-1.53
Minimum kurtosis among attributes of the numeric type.
3.88
Second quartile (Median) of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
-0.13
Minimum of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
8.64
Maximum kurtosis among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
1.7
Second quartile (Median) of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
94.51
Maximum of means among attributes of the numeric type.
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of binary attributes.
0.23
Second quartile (Median) of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
5.4
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
-2.27
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
The maximum number of distinct values among attributes of the nominal type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task