Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5011

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5011

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5011 (TID: 101263), and it has 111 rows and 60 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

62 features

pXC50 (target)numeric93 unique values
0 missing
molecule_id (row identifier)nominal111 unique values
0 missing
MATS5vnumeric97 unique values
0 missing
ATSC7enumeric98 unique values
0 missing
MATS8vnumeric92 unique values
0 missing
SpMax4_Bh.m.numeric70 unique values
0 missing
X0Avnumeric64 unique values
0 missing
Eta_F_Anumeric94 unique values
0 missing
H.numeric58 unique values
0 missing
ATS7snumeric103 unique values
0 missing
IC3numeric84 unique values
0 missing
Eig09_EA.ed.numeric57 unique values
0 missing
SM04_AEA.ri.numeric57 unique values
0 missing
P_VSA_i_4numeric22 unique values
0 missing
Eig04_EA.ri.numeric74 unique values
0 missing
Eig03_EA.dm.numeric18 unique values
0 missing
ATSC1enumeric64 unique values
0 missing
Eig04_EA.dm.numeric13 unique values
0 missing
SpMax7_Bh.s.numeric81 unique values
0 missing
ATSC7snumeric109 unique values
0 missing
MATS5mnumeric87 unique values
0 missing
SAaccnumeric30 unique values
0 missing
P_VSA_m_3numeric17 unique values
0 missing
Eig05_AEA.ri.numeric84 unique values
0 missing
ATSC2inumeric75 unique values
0 missing
Eig05_EA.ed.numeric63 unique values
0 missing
SM14_AEA.dm.numeric63 unique values
0 missing
SssNHnumeric83 unique values
0 missing
SsFnumeric45 unique values
0 missing
Eta_betaS_Anumeric45 unique values
0 missing
Psi_i_snumeric65 unique values
0 missing
ZM1Kupnumeric78 unique values
0 missing
ATS4mnumeric96 unique values
0 missing
Eig03_AEA.ed.numeric59 unique values
0 missing
Eig03_EA.ed.numeric64 unique values
0 missing
SM12_AEA.dm.numeric64 unique values
0 missing
SpAD_EA.dm.numeric34 unique values
0 missing
MPC09numeric53 unique values
0 missing
Menumeric45 unique values
0 missing
Eig04_AEA.ri.numeric75 unique values
0 missing
Eig04_EAnumeric55 unique values
0 missing
SM12_AEA.bo.numeric55 unique values
0 missing
Psi_e_1numeric105 unique values
0 missing
ATSC5enumeric103 unique values
0 missing
Eig05_EA.ri.numeric88 unique values
0 missing
P_VSA_s_6numeric22 unique values
0 missing
Eig05_AEA.ed.numeric58 unique values
0 missing
Eig03_EA.bo.numeric64 unique values
0 missing
SM13_AEA.ri.numeric64 unique values
0 missing
Eig02_AEA.dm.numeric79 unique values
0 missing
ATSC5snumeric109 unique values
0 missing
GGI7numeric59 unique values
0 missing
GGI6numeric56 unique values
0 missing
P_VSA_LogP_2numeric30 unique values
0 missing
ATSC4snumeric109 unique values
0 missing
SpMax8_Bh.s.numeric68 unique values
0 missing
MPC10numeric54 unique values
0 missing
MPC08numeric47 unique values
0 missing
X3Avnumeric46 unique values
0 missing
X4Avnumeric41 unique values
0 missing
nHetnumeric10 unique values
0 missing
SM10_EAnumeric66 unique values
0 missing

107 properties

111
Number of instances (rows) of the dataset.
62
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
61
Number of numeric attributes.
1
Number of nominal attributes.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
-1.39
Minimum kurtosis among attributes of the numeric type.
3.86
Second quartile (Median) of means among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
16.38
Maximum kurtosis among attributes of the numeric type.
-0.03
Minimum of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
428.44
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0.14
Second quartile (Median) of skewness among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.56
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of binary attributes.
0.45
Second quartile (Median) of standard deviation of attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
The maximum number of distinct values among attributes of the nominal type.
-3.2
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
2.13
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
7.45
Third quartile of kurtosis among attributes of the numeric type.
0.2
Average class difference between consecutive instances.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
193.19
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
98.39
Percentage of numeric attributes.
7.66
Third quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.61
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
3.26
Mean kurtosis among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
0.6
Third quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
19.26
Mean of means among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-0.66
First quartile of kurtosis among attributes of the numeric type.
1.42
Third quartile of standard deviation of attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.93
First quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Standard deviation of the number of distinct values among attributes of the nominal type.
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Average number of distinct values among the attributes of the nominal type.
-1.95
First quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
-0.4
Mean skewness among attributes of the numeric type.
0.23
First quartile of standard deviation of attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Percentage of instances belonging to the most frequent class.
8.89
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Entropy of the target attribute values.
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.85
Second quartile (Median) of kurtosis among attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task