Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2146303

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2146303

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2146303 (TID: 105131), and it has 128 rows and 65 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

67 features

pXC50 (target)numeric117 unique values
0 missing
molecule_id (row identifier)nominal128 unique values
0 missing
AACnumeric108 unique values
0 missing
AECCnumeric114 unique values
0 missing
ALOGPnumeric121 unique values
0 missing
ALOGP2numeric122 unique values
0 missing
AMRnumeric122 unique values
0 missing
AMWnumeric119 unique values
0 missing
ARRnumeric71 unique values
0 missing
ATS1enumeric114 unique values
0 missing
ATS1inumeric108 unique values
0 missing
ATS1mnumeric115 unique values
0 missing
ATS1pnumeric109 unique values
0 missing
ATS1snumeric111 unique values
0 missing
ATS1vnumeric113 unique values
0 missing
ATS2enumeric109 unique values
0 missing
ATS2inumeric116 unique values
0 missing
ATS2mnumeric108 unique values
0 missing
ATS2pnumeric109 unique values
0 missing
ATS2snumeric115 unique values
0 missing
ATS2vnumeric115 unique values
0 missing
ATS3enumeric113 unique values
0 missing
ATS3inumeric114 unique values
0 missing
ATS3mnumeric117 unique values
0 missing
ATS3pnumeric119 unique values
0 missing
ATS3snumeric119 unique values
0 missing
ATS3vnumeric117 unique values
0 missing
ATS4enumeric114 unique values
0 missing
ATS4inumeric116 unique values
0 missing
ATS4mnumeric116 unique values
0 missing
ATS4pnumeric116 unique values
0 missing
ATS4snumeric124 unique values
0 missing
ATS4vnumeric120 unique values
0 missing
ATS5enumeric123 unique values
0 missing
ATS5inumeric114 unique values
0 missing
ATS5mnumeric119 unique values
0 missing
ATS5pnumeric120 unique values
0 missing
ATS5snumeric122 unique values
0 missing
ATS5vnumeric121 unique values
0 missing
ATS6enumeric126 unique values
0 missing
ATS6inumeric117 unique values
0 missing
ATS6mnumeric118 unique values
0 missing
ATS6pnumeric121 unique values
0 missing
ATS6snumeric121 unique values
0 missing
ATS6vnumeric123 unique values
0 missing
ATS7enumeric121 unique values
0 missing
ATS7inumeric124 unique values
0 missing
ATS7mnumeric122 unique values
0 missing
ATS7pnumeric122 unique values
0 missing
ATS7snumeric122 unique values
0 missing
ATS7vnumeric125 unique values
0 missing
ATS8enumeric125 unique values
0 missing
ATS8inumeric121 unique values
0 missing
ATS8mnumeric121 unique values
0 missing
ATS8pnumeric117 unique values
0 missing
ATS8snumeric121 unique values
0 missing
ATS8vnumeric122 unique values
0 missing
ATSC1enumeric95 unique values
0 missing
ATSC1inumeric113 unique values
0 missing
ATSC1mnumeric121 unique values
0 missing
ATSC1pnumeric118 unique values
0 missing
ATSC1snumeric122 unique values
0 missing
ATSC1vnumeric119 unique values
0 missing
ATSC2enumeric103 unique values
0 missing
ATSC2inumeric112 unique values
0 missing
ATSC2mnumeric121 unique values
0 missing
ATSC2pnumeric121 unique values
0 missing

107 properties

128
Number of instances (rows) of the dataset.
67
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
66
Number of numeric attributes.
1
Number of nominal attributes.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
-0.53
Minimum kurtosis among attributes of the numeric type.
4.01
Second quartile (Median) of means among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
19.26
Maximum kurtosis among attributes of the numeric type.
0.11
Minimum of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
101.97
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0.24
Second quartile (Median) of skewness among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.52
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of binary attributes.
0.32
Second quartile (Median) of standard deviation of attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
The maximum number of distinct values among attributes of the nominal type.
-2.15
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
4.02
Maximum skewness among attributes of the numeric type.
0.1
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
1.05
Third quartile of kurtosis among attributes of the numeric type.
0.75
Average class difference between consecutive instances.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
16.69
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
98.51
Percentage of numeric attributes.
4.86
Third quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.49
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
1.62
Mean kurtosis among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
0.38
Third quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
6.15
Mean of means among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.07
First quartile of kurtosis among attributes of the numeric type.
0.44
Third quartile of standard deviation of attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
3.67
First quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Standard deviation of the number of distinct values among attributes of the nominal type.
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Average number of distinct values among the attributes of the nominal type.
0.03
First quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.28
Mean skewness among attributes of the numeric type.
0.23
First quartile of standard deviation of attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Percentage of instances belonging to the most frequent class.
1.09
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Entropy of the target attribute values.
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.4
Second quartile (Median) of kurtosis among attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task