Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3189

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3189

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3189 (TID: 12598), and it has 53 rows and 123 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

125 features

pXC50 (target)numeric47 unique values
0 missing
molecule_id (row identifier)nominal53 unique values
0 missing
C.026numeric4 unique values
0 missing
ATSC3enumeric32 unique values
0 missing
ATSC6enumeric29 unique values
0 missing
PJI2numeric4 unique values
0 missing
SpMax6_Bh.s.numeric25 unique values
0 missing
BLTA96numeric30 unique values
0 missing
BLTD48numeric30 unique values
0 missing
BLTF96numeric29 unique values
0 missing
MLOGP2numeric30 unique values
0 missing
ALOGP2numeric32 unique values
0 missing
ATS1pnumeric31 unique values
0 missing
ATS1vnumeric31 unique values
0 missing
ATS2pnumeric31 unique values
0 missing
ATS2vnumeric30 unique values
0 missing
ATS3pnumeric32 unique values
0 missing
ATS3vnumeric32 unique values
0 missing
ATS4pnumeric32 unique values
0 missing
ATS4vnumeric32 unique values
0 missing
ATS5enumeric32 unique values
0 missing
ATS5inumeric32 unique values
0 missing
ATS5mnumeric32 unique values
0 missing
ATS5pnumeric32 unique values
0 missing
ATS5snumeric32 unique values
0 missing
ATS5vnumeric32 unique values
0 missing
ATS6enumeric32 unique values
0 missing
ATS6inumeric32 unique values
0 missing
ATS6pnumeric32 unique values
0 missing
ATS6snumeric31 unique values
0 missing
ATS6vnumeric32 unique values
0 missing
ATS7inumeric32 unique values
0 missing
ATS7pnumeric32 unique values
0 missing
ATSC1pnumeric31 unique values
0 missing
ATSC1vnumeric31 unique values
0 missing
ATSC2pnumeric31 unique values
0 missing
ATSC2vnumeric32 unique values
0 missing
ATSC3pnumeric32 unique values
0 missing
ATSC3vnumeric32 unique values
0 missing
ATSC4inumeric31 unique values
0 missing
ATSC4pnumeric32 unique values
0 missing
ATSC4vnumeric32 unique values
0 missing
ATSC5inumeric32 unique values
0 missing
ATSC5mnumeric32 unique values
0 missing
ATSC5pnumeric31 unique values
0 missing
ATSC5vnumeric32 unique values
0 missing
ATSC6inumeric30 unique values
0 missing
ATSC6mnumeric32 unique values
0 missing
ATSC6pnumeric32 unique values
0 missing
ATSC6vnumeric32 unique values
0 missing
ATSC7inumeric32 unique values
0 missing
ATSC7pnumeric32 unique values
0 missing
ATSC7vnumeric32 unique values
0 missing
ATSC8pnumeric32 unique values
0 missing
BIC0numeric27 unique values
0 missing
BIC1numeric29 unique values
0 missing
BIC2numeric28 unique values
0 missing
BIC3numeric29 unique values
0 missing
BLInumeric30 unique values
0 missing
C.024numeric10 unique values
0 missing
C.025numeric5 unique values
0 missing
C.029numeric2 unique values
0 missing
C.030numeric2 unique values
0 missing
C.043numeric2 unique values
0 missing
CATS2D_01_LLnumeric15 unique values
0 missing
CATS2D_02_LLnumeric17 unique values
0 missing
CATS2D_03_AAnumeric5 unique values
0 missing
CATS2D_03_LLnumeric12 unique values
0 missing
CATS2D_04_APnumeric3 unique values
0 missing
CATS2D_04_LLnumeric8 unique values
0 missing
CATS2D_05_LLnumeric9 unique values
0 missing
CATS2D_06_LLnumeric12 unique values
0 missing
CATS2D_07_LLnumeric13 unique values
0 missing
CIC0numeric30 unique values
0 missing
CIC1numeric31 unique values
0 missing
CIC2numeric32 unique values
0 missing
CIC3numeric32 unique values
0 missing
D.Dtr06numeric25 unique values
0 missing
Eig01_EA.ri.numeric17 unique values
0 missing
Eig07_AEA.ri.numeric26 unique values
0 missing
Eig07_EA.ri.numeric26 unique values
0 missing
Eig08_AEA.ri.numeric19 unique values
0 missing
Eig08_EAnumeric18 unique values
0 missing
Eig08_EA.ed.numeric19 unique values
0 missing
Eig08_EA.ri.numeric20 unique values
0 missing
Eig11_AEA.ed.numeric19 unique values
0 missing
Eig13_EA.ed.numeric24 unique values
0 missing
Eta_betaS_Anumeric22 unique values
0 missing
Eta_epsi_Anumeric26 unique values
0 missing
GGI4numeric20 unique values
0 missing
GGI5numeric20 unique values
0 missing
H.049numeric3 unique values
0 missing
MATS5enumeric31 unique values
0 missing
MPC05numeric22 unique values
0 missing
N.numeric25 unique values
0 missing
N.069numeric2 unique values
0 missing
N.075numeric3 unique values
0 missing
NaaNnumeric3 unique values
0 missing
NaasCnumeric9 unique values
0 missing
nArNH2numeric2 unique values
0 missing
nBnznumeric6 unique values
0 missing
nCnumeric14 unique values
0 missing
nCarnumeric8 unique values
0 missing
nCb.numeric7 unique values
0 missing
nCbHnumeric10 unique values
0 missing
nPyrimidinesnumeric2 unique values
0 missing
nR06numeric6 unique values
0 missing
Polnumeric21 unique values
0 missing
P_VSA_e_1numeric17 unique values
0 missing
P_VSA_e_2numeric32 unique values
0 missing
P_VSA_i_2numeric32 unique values
0 missing
P_VSA_LogP_7numeric19 unique values
0 missing
P_VSA_m_1numeric17 unique values
0 missing
P_VSA_MR_7numeric6 unique values
0 missing
P_VSA_p_1numeric17 unique values
0 missing
P_VSA_p_3numeric32 unique values
0 missing
P_VSA_s_2numeric17 unique values
0 missing
P_VSA_v_1numeric17 unique values
0 missing
P_VSA_v_3numeric32 unique values
0 missing
Rperimnumeric9 unique values
0 missing
SaaCHnumeric31 unique values
0 missing
SaaNnumeric17 unique values
0 missing
SaasCnumeric30 unique values
0 missing
SaasNnumeric17 unique values
0 missing
SIC0numeric27 unique values
0 missing

107 properties

53
Number of instances (rows) of the dataset.
125
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
124
Number of numeric attributes.
1
Number of nominal attributes.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
-1.89
Minimum kurtosis among attributes of the numeric type.
3.99
Second quartile (Median) of means among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
4.74
Maximum kurtosis among attributes of the numeric type.
-4.47
Minimum of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
1165.06
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
1.69
Second quartile (Median) of skewness among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
2.36
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of binary attributes.
2.56
Second quartile (Median) of standard deviation of attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
The maximum number of distinct values among attributes of the nominal type.
-1.88
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
2.08
Maximum skewness among attributes of the numeric type.
0.05
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
1.92
Third quartile of kurtosis among attributes of the numeric type.
0.04
Average class difference between consecutive instances.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
2580.84
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
99.2
Percentage of numeric attributes.
17
Third quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.8
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.87
Mean kurtosis among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
1.93
Third quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
42.61
Mean of means among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-0.03
First quartile of kurtosis among attributes of the numeric type.
20.42
Third quartile of standard deviation of attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
1.35
First quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Standard deviation of the number of distinct values among attributes of the nominal type.
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Average number of distinct values among the attributes of the nominal type.
0.98
First quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
1.19
Mean skewness among attributes of the numeric type.
0.95
First quartile of standard deviation of attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Percentage of instances belonging to the most frequent class.
69.5
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Entropy of the target attribute values.
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
1.26
Second quartile (Median) of kurtosis among attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task