Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4218

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4218

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4218 (TID: 100271), and it has 551 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric213 unique values
0 missing
molecule_id (row identifier)nominal551 unique values
0 missing
SM11_EA.dm.numeric177 unique values
0 missing
SM06_EA.dm.numeric342 unique values
0 missing
SM13_EA.dm.numeric172 unique values
0 missing
SM15_EA.dm.numeric169 unique values
0 missing
SM07_EA.dm.numeric183 unique values
0 missing
SM04_EA.dm.numeric372 unique values
0 missing
SM09_EA.dm.numeric180 unique values
0 missing
SpDiam_EA.dm.numeric156 unique values
0 missing
SM02_EA.dm.numeric338 unique values
0 missing
SM05_EA.dm.numeric179 unique values
0 missing
SM08_EA.dm.numeric310 unique values
0 missing
SM12_EA.dm.numeric266 unique values
0 missing
Eig01_EA.dm.numeric136 unique values
0 missing
SpMax_EA.dm.numeric136 unique values
0 missing
SM14_EA.dm.numeric255 unique values
0 missing
SM10_EA.dm.numeric279 unique values
0 missing
nRCONHRnumeric4 unique values
0 missing
Eig02_EA.dm.numeric147 unique values
0 missing
SM03_EA.dm.numeric93 unique values
0 missing
SssNHnumeric337 unique values
0 missing
ATSC3enumeric405 unique values
0 missing
DECCnumeric426 unique values
0 missing
SpMAD_EA.dm.numeric347 unique values
0 missing
P_VSA_s_5numeric34 unique values
0 missing
SpAD_EA.dm.numeric381 unique values
0 missing
TPSA.NO.numeric421 unique values
0 missing
ATSC2snumeric545 unique values
0 missing
O.060numeric7 unique values
0 missing
Hynumeric279 unique values
0 missing
C.040numeric5 unique values
0 missing
ATSC2enumeric376 unique values
0 missing
ICRnumeric339 unique values
0 missing
SAaccnumeric425 unique values
0 missing
SpMax1_Bh.s.numeric95 unique values
0 missing
MWnumeric512 unique values
0 missing
SAdonnumeric57 unique values
0 missing
Eig03_EA.dm.numeric127 unique values
0 missing
P_VSA_p_2numeric419 unique values
0 missing
P_VSA_v_2numeric440 unique values
0 missing
Eig02_AEA.dm.numeric359 unique values
0 missing
ATS1mnumeric388 unique values
0 missing
HVcpxnumeric423 unique values
0 missing
P_VSA_LogP_2numeric277 unique values
0 missing
JGI10numeric19 unique values
0 missing
Uindexnumeric537 unique values
0 missing
Yindexnumeric345 unique values
0 missing
RBFnumeric136 unique values
0 missing
ECCnumeric289 unique values
0 missing
GGI10numeric168 unique values
0 missing
LLS_01numeric7 unique values
0 missing
IDEnumeric425 unique values
0 missing
AECCnumeric434 unique values
0 missing
MSDnumeric504 unique values
0 missing
S3Knumeric499 unique values
0 missing
NssNHnumeric5 unique values
0 missing
O.numeric113 unique values
0 missing
ZM1Kupnumeric536 unique values
0 missing
GGI9numeric241 unique values
0 missing
ATS2mnumeric401 unique values
0 missing
nHAccnumeric15 unique values
0 missing
Hypertens.80numeric2 unique values
0 missing
H.050numeric7 unique values
0 missing
P_VSA_s_3numeric525 unique values
0 missing
CATS2D_03_DAnumeric6 unique values
0 missing
ATSC8enumeric403 unique values
0 missing
Eig08_AEA.dm.numeric409 unique values
0 missing
nHDonnumeric7 unique values
0 missing
Eig07_AEA.dm.numeric433 unique values
0 missing
Eig12_AEA.dm.numeric384 unique values
0 missing

107 properties

551
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Average number of distinct values among the attributes of the nominal type.
-0.18
First quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Standard deviation of the number of distinct values among attributes of the nominal type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.53
Mean skewness among attributes of the numeric type.
0.39
First quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Percentage of instances belonging to the most frequent class.
9.85
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.53
Second quartile (Median) of kurtosis among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Entropy of the target attribute values.
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
Maximum entropy among attributes.
-0.94
Minimum kurtosis among attributes of the numeric type.
3.55
Second quartile (Median) of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
51.84
Maximum kurtosis among attributes of the numeric type.
0.01
Minimum of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
452.36
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0.35
Second quartile (Median) of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of binary attributes.
1.11
Second quartile (Median) of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.13
Number of attributes divided by the number of instances.
The maximum number of distinct values among attributes of the nominal type.
-2.15
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
5.33
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
2.95
Third quartile of kurtosis among attributes of the numeric type.
0.7
Average class difference between consecutive instances.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
120.79
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
98.59
Percentage of numeric attributes.
9.33
Third quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.41
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
2.87
Mean kurtosis among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
1.23
Third quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
27.77
Mean of means among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-0.2
First quartile of kurtosis among attributes of the numeric type.
5.2
Third quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.97
First quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task