Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1829

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1829

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1829 (TID: 11208), and it has 371 rows and 68 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

70 features

pXC50 (target)numeric259 unique values
0 missing
molecule_id (row identifier)nominal371 unique values
0 missing
SaasNnumeric51 unique values
0 missing
CATS2D_01_DDnumeric3 unique values
0 missing
nRNHOnumeric3 unique values
0 missing
P_VSA_MR_3numeric14 unique values
0 missing
NaasNnumeric2 unique values
0 missing
O.056numeric4 unique values
0 missing
GATS5mnumeric265 unique values
0 missing
nPyrimidinesnumeric2 unique values
0 missing
SssCH2numeric311 unique values
0 missing
nTriazolesnumeric2 unique values
0 missing
C.029numeric3 unique values
0 missing
SsFnumeric73 unique values
0 missing
N.073numeric3 unique values
0 missing
LOCnumeric240 unique values
0 missing
SsOHnumeric212 unique values
0 missing
CATS2D_03_DAnumeric8 unique values
0 missing
ATSC2snumeric359 unique values
0 missing
X.numeric49 unique values
0 missing
MATS1snumeric149 unique values
0 missing
nFnumeric7 unique values
0 missing
NsFnumeric7 unique values
0 missing
nXnumeric7 unique values
0 missing
P_VSA_e_6numeric7 unique values
0 missing
CATS2D_04_LLnumeric23 unique values
0 missing
SpMAD_AEA.ri.numeric149 unique values
0 missing
Menumeric73 unique values
0 missing
MAXDNnumeric285 unique values
0 missing
Eta_epsi_Anumeric144 unique values
0 missing
SpMAD_AEA.bo.numeric152 unique values
0 missing
C.013numeric3 unique values
0 missing
F.083numeric3 unique values
0 missing
nCRX3numeric3 unique values
0 missing
ATSC2enumeric259 unique values
0 missing
GATS2inumeric262 unique values
0 missing
MATS2snumeric186 unique values
0 missing
SpMAD_EAnumeric147 unique values
0 missing
SM03_EA.dm.numeric60 unique values
0 missing
SM06_EA.dm.numeric165 unique values
0 missing
SM08_EA.dm.numeric154 unique values
0 missing
C.032numeric2 unique values
0 missing
AMWnumeric292 unique values
0 missing
Eig01_EA.dm.numeric54 unique values
0 missing
SpMax_EA.dm.numeric54 unique values
0 missing
P_VSA_m_4numeric19 unique values
0 missing
SpMax4_Bh.s.numeric182 unique values
0 missing
CATS2D_01_AAnumeric5 unique values
0 missing
CATS2D_09_DAnumeric10 unique values
0 missing
SM05_EA.dm.numeric87 unique values
0 missing
S.107numeric4 unique values
0 missing
P_VSA_p_2numeric180 unique values
0 missing
MATS3snumeric243 unique values
0 missing
Mpnumeric125 unique values
0 missing
MATS3enumeric217 unique values
0 missing
AACnumeric250 unique values
0 missing
IC0numeric250 unique values
0 missing
SpMAD_EA.ed.numeric276 unique values
0 missing
RBFnumeric122 unique values
0 missing
MATS1enumeric180 unique values
0 missing
SpMax1_Bh.i.numeric181 unique values
0 missing
SM07_EA.dm.numeric88 unique values
0 missing
SM09_EA.dm.numeric89 unique values
0 missing
P_VSA_i_1numeric17 unique values
0 missing
Psi_e_Anumeric265 unique values
0 missing
Psi_i_Anumeric265 unique values
0 missing
nArOHnumeric4 unique values
0 missing
ATSC3snumeric364 unique values
0 missing
CATS2D_02_DLnumeric13 unique values
0 missing
SpMin2_Bh.p.numeric161 unique values
0 missing

107 properties

371
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
69
Number of numeric attributes.
1
Number of nominal attributes.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0.2
First quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Standard deviation of the number of distinct values among attributes of the nominal type.
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Average number of distinct values among the attributes of the nominal type.
0.22
First quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
1.25
Mean skewness among attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Percentage of instances belonging to the most frequent class.
4.67
Mean standard deviation of attributes of the numeric type.
2.3
Second quartile (Median) of kurtosis among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Entropy of the target attribute values.
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
1.45
Second quartile (Median) of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
-1.75
Minimum kurtosis among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
25.16
Maximum kurtosis among attributes of the numeric type.
-0.05
Minimum of means among attributes of the numeric type.
1.4
Second quartile (Median) of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
151.92
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0.62
Second quartile (Median) of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.19
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
The maximum number of distinct values among attributes of the nominal type.
-2.03
Minimum skewness among attributes of the numeric type.
0.02
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
5.09
Third quartile of kurtosis among attributes of the numeric type.
0.08
Average class difference between consecutive instances.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
4.45
Maximum skewness among attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
98.57
Percentage of numeric attributes.
4.8
Third quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
65.7
Maximum standard deviation of attributes of the numeric type.
Number of instances belonging to the least frequent class.
1.43
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
2.12
Third quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
2.95
Mean kurtosis among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.81
First quartile of kurtosis among attributes of the numeric type.
2.11
Third quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
6.81
Mean of means among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.35
First quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task