Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2065

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2065

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2065 (TID: 13), and it has 182 rows and 68 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

70 features

pXC50 (target)numeric114 unique values
0 missing
molecule_id (row identifier)nominal182 unique values
0 missing
SdsCHnumeric69 unique values
0 missing
C.018numeric2 unique values
0 missing
GNarnumeric92 unique values
0 missing
X0Anumeric68 unique values
0 missing
D.Dtr09numeric35 unique values
0 missing
GATS6snumeric160 unique values
0 missing
nR09numeric3 unique values
0 missing
SM11_EA.dm.numeric45 unique values
0 missing
SM13_EA.dm.numeric44 unique values
0 missing
SM15_EA.dm.numeric45 unique values
0 missing
SIC1numeric101 unique values
0 missing
SM07_EA.dm.numeric41 unique values
0 missing
SM09_EA.dm.numeric44 unique values
0 missing
SRW07numeric20 unique values
0 missing
SRW09numeric37 unique values
0 missing
SM05_EA.dm.numeric43 unique values
0 missing
SpMax1_Bh.e.numeric104 unique values
0 missing
D.Dtr05numeric89 unique values
0 missing
nR05numeric5 unique values
0 missing
SRW05numeric5 unique values
0 missing
MCDnumeric69 unique values
0 missing
SM10_EA.dm.numeric66 unique values
0 missing
SM12_EA.dm.numeric62 unique values
0 missing
SM14_EA.dm.numeric59 unique values
0 missing
SIC2numeric106 unique values
0 missing
SpDiam_EA.dm.numeric37 unique values
0 missing
P_VSA_LogP_6numeric21 unique values
0 missing
HNarnumeric87 unique values
0 missing
PDInumeric90 unique values
0 missing
P_VSA_m_3numeric36 unique values
0 missing
X2Anumeric53 unique values
0 missing
Eig01_EA.dm.numeric36 unique values
0 missing
SpMax_EA.dm.numeric36 unique values
0 missing
GATS6enumeric152 unique values
0 missing
P_VSA_e_5numeric32 unique values
0 missing
NdsCHnumeric4 unique values
0 missing
CIC2numeric125 unique values
0 missing
CIC4numeric118 unique values
0 missing
CIC5numeric120 unique values
0 missing
SpMax1_Bh.i.numeric112 unique values
0 missing
SIC4numeric90 unique values
0 missing
SIC5numeric91 unique values
0 missing
Eig03_AEA.dm.numeric108 unique values
0 missing
Eta_betaS_Anumeric65 unique values
0 missing
SIC3numeric97 unique values
0 missing
IC1numeric139 unique values
0 missing
BIC1numeric102 unique values
0 missing
CIC1numeric137 unique values
0 missing
RCInumeric23 unique values
0 missing
RFDnumeric23 unique values
0 missing
P_VSA_s_6numeric63 unique values
0 missing
piPC10numeric117 unique values
0 missing
Eig05_AEA.dm.numeric137 unique values
0 missing
nCconjnumeric9 unique values
0 missing
MATS5snumeric147 unique values
0 missing
GATS5snumeric158 unique values
0 missing
X1Anumeric47 unique values
0 missing
Eig01_AEA.bo.numeric80 unique values
0 missing
SpMax_AEA.bo.numeric80 unique values
0 missing
nCIRnumeric10 unique values
0 missing
nCICnumeric8 unique values
0 missing
TRSnumeric22 unique values
0 missing
P_VSA_v_2numeric74 unique values
0 missing
Rbridnumeric5 unique values
0 missing
SaaNnumeric48 unique values
0 missing
C.034numeric4 unique values
0 missing
P_VSA_MR_2numeric56 unique values
0 missing
H.048numeric4 unique values
0 missing

107 properties

182
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
69
Number of numeric attributes.
1
Number of nominal attributes.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
30.6
Maximum kurtosis among attributes of the numeric type.
0.12
Minimum of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
170.62
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0.09
Second quartile (Median) of skewness among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.38
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of binary attributes.
0.79
Second quartile (Median) of standard deviation of attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
The maximum number of distinct values among attributes of the nominal type.
-1.64
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
4.4
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
2.31
Third quartile of kurtosis among attributes of the numeric type.
-0.31
Average class difference between consecutive instances.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
57.81
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
98.57
Percentage of numeric attributes.
5.63
Third quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.43
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
2.29
Mean kurtosis among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
0.99
Third quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
15.49
Mean of means among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-0.61
First quartile of kurtosis among attributes of the numeric type.
3.18
Third quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.88
First quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Standard deviation of the number of distinct values among attributes of the nominal type.
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Average number of distinct values among the attributes of the nominal type.
-0.8
First quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.3
Mean skewness among attributes of the numeric type.
0.15
First quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Percentage of instances belonging to the most frequent class.
6.69
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Entropy of the target attribute values.
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.15
Second quartile (Median) of kurtosis among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
-1.63
Minimum kurtosis among attributes of the numeric type.
2.6
Second quartile (Median) of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task