Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4772

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL4772

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL4772 (TID: 12608), and it has 123 rows and 62 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

64 features

pXC50 (target)numeric84 unique values
0 missing
molecule_id (row identifier)nominal123 unique values
0 missing
Eig04_AEA.dm.numeric67 unique values
0 missing
Eig07_AEA.bo.numeric45 unique values
0 missing
GMTIVnumeric103 unique values
0 missing
Eta_betanumeric40 unique values
0 missing
Eta_betaPnumeric13 unique values
0 missing
GATS3inumeric97 unique values
0 missing
SpMax7_Bh.m.numeric85 unique values
0 missing
ATSC1snumeric104 unique values
0 missing
Eig05_AEA.dm.numeric73 unique values
0 missing
MATS2mnumeric70 unique values
0 missing
ATS8mnumeric107 unique values
0 missing
SpMin6_Bh.s.numeric53 unique values
0 missing
SpMAD_EA.ri.numeric73 unique values
0 missing
P_VSA_m_2numeric100 unique values
0 missing
MATS1mnumeric43 unique values
0 missing
nBMnumeric7 unique values
0 missing
Ucnumeric7 unique values
0 missing
MATS6inumeric97 unique values
0 missing
Eig06_AEA.bo.numeric43 unique values
0 missing
GATS1pnumeric88 unique values
0 missing
ATSC8snumeric121 unique values
0 missing
Eig09_EA.bo.numeric27 unique values
0 missing
ALOGPnumeric101 unique values
0 missing
ALOGP2numeric104 unique values
0 missing
Eig13_AEA.bo.numeric46 unique values
0 missing
SpMax3_Bh.m.numeric86 unique values
0 missing
Eig11_AEA.dm.numeric69 unique values
0 missing
P_VSA_LogP_1numeric14 unique values
0 missing
SpMax4_Bh.s.numeric79 unique values
0 missing
Eta_sh_ynumeric62 unique values
0 missing
AACnumeric81 unique values
0 missing
AECCnumeric44 unique values
0 missing
AMRnumeric104 unique values
0 missing
AMWnumeric95 unique values
0 missing
ARRnumeric19 unique values
0 missing
ATS1enumeric89 unique values
0 missing
ATS1inumeric89 unique values
0 missing
ATS1mnumeric84 unique values
0 missing
ATS1pnumeric87 unique values
0 missing
ATS1snumeric93 unique values
0 missing
ATS1vnumeric83 unique values
0 missing
ATS2enumeric94 unique values
0 missing
ATS2inumeric93 unique values
0 missing
ATS2mnumeric88 unique values
0 missing
ATS2pnumeric95 unique values
0 missing
ATS2snumeric105 unique values
0 missing
ATS2vnumeric86 unique values
0 missing
ATS3enumeric99 unique values
0 missing
ATS3inumeric101 unique values
0 missing
ATS3mnumeric95 unique values
0 missing
ATS3pnumeric104 unique values
0 missing
ATS3snumeric98 unique values
0 missing
ATS3vnumeric98 unique values
0 missing
ATS4enumeric103 unique values
0 missing
ATS4inumeric107 unique values
0 missing
ATS4mnumeric110 unique values
0 missing
ATS4pnumeric112 unique values
0 missing
ATS4snumeric106 unique values
0 missing
ATS4vnumeric107 unique values
0 missing
ATS5enumeric108 unique values
0 missing
ATS5inumeric113 unique values
0 missing
ATS5mnumeric107 unique values
0 missing

107 properties

123
Number of instances (rows) of the dataset.
64
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
63
Number of numeric attributes.
1
Number of nominal attributes.
1.56
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
First quartile of entropy among attributes.
0.35
Third quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
1.84
Mean kurtosis among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-0.39
First quartile of kurtosis among attributes of the numeric type.
0.35
Third quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
360.46
Mean of means among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
2.87
First quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0
Number of binary attributes.
-0.13
First quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Standard deviation of the number of distinct values among attributes of the nominal type.
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Average number of distinct values among the attributes of the nominal type.
0.1
First quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.2
Mean skewness among attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Percentage of instances belonging to the most frequent class.
99.6
Mean standard deviation of attributes of the numeric type.
0.1
Second quartile (Median) of kurtosis among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Entropy of the target attribute values.
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
3.88
Second quartile (Median) of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
-1.13
Minimum kurtosis among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
13.81
Maximum kurtosis among attributes of the numeric type.
-0.07
Minimum of means among attributes of the numeric type.
0.1
Second quartile (Median) of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
22098.19
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0.12
Second quartile (Median) of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.52
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
The maximum number of distinct values among attributes of the nominal type.
-1.93
Minimum skewness among attributes of the numeric type.
0
Percentage of missing values.
2.01
Third quartile of kurtosis among attributes of the numeric type.
-0.14
Average class difference between consecutive instances.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
3.47
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
98.44
Percentage of numeric attributes.
5.52
Third quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
6181.34
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task