Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1075174

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1075174

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1075174 (TID: 103116), and it has 10 rows and 116 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

118 features

pXC50 (target)numeric6 unique values
0 missing
molecule_id (row identifier)nominal10 unique values
0 missing
GATS2pnumeric6 unique values
0 missing
GATS2vnumeric6 unique values
0 missing
GATS7pnumeric7 unique values
0 missing
MATS2pnumeric6 unique values
0 missing
MATS2vnumeric6 unique values
0 missing
AACnumeric7 unique values
0 missing
AECCnumeric7 unique values
0 missing
ALOGPnumeric7 unique values
0 missing
ALOGP2numeric7 unique values
0 missing
AMRnumeric7 unique values
0 missing
AMWnumeric7 unique values
0 missing
ARRnumeric7 unique values
0 missing
ATS1enumeric7 unique values
0 missing
ATS1inumeric7 unique values
0 missing
ATS1mnumeric7 unique values
0 missing
ATS1pnumeric7 unique values
0 missing
ATS1snumeric7 unique values
0 missing
ATS1vnumeric6 unique values
0 missing
ATS2enumeric7 unique values
0 missing
ATS2inumeric7 unique values
0 missing
ATS2mnumeric7 unique values
0 missing
ATS2pnumeric7 unique values
0 missing
ATS2snumeric7 unique values
0 missing
ATS2vnumeric6 unique values
0 missing
ATS3enumeric7 unique values
0 missing
ATS3inumeric7 unique values
0 missing
ATS3mnumeric7 unique values
0 missing
ATS3pnumeric7 unique values
0 missing
ATS3snumeric7 unique values
0 missing
ATS3vnumeric6 unique values
0 missing
ATS4enumeric7 unique values
0 missing
ATS4inumeric7 unique values
0 missing
ATS4mnumeric7 unique values
0 missing
ATS4pnumeric7 unique values
0 missing
ATS4snumeric7 unique values
0 missing
ATS4vnumeric6 unique values
0 missing
ATS5enumeric7 unique values
0 missing
ATS5inumeric7 unique values
0 missing
ATS5mnumeric7 unique values
0 missing
ATS5pnumeric7 unique values
0 missing
ATS5snumeric7 unique values
0 missing
ATS5vnumeric6 unique values
0 missing
ATS6enumeric7 unique values
0 missing
ATS6inumeric7 unique values
0 missing
ATS6mnumeric7 unique values
0 missing
ATS6pnumeric7 unique values
0 missing
ATS6snumeric7 unique values
0 missing
ATS6vnumeric6 unique values
0 missing
ATS7enumeric7 unique values
0 missing
ATS7inumeric7 unique values
0 missing
ATS7mnumeric7 unique values
0 missing
ATS7pnumeric7 unique values
0 missing
ATS7snumeric7 unique values
0 missing
ATS7vnumeric6 unique values
0 missing
ATS8enumeric7 unique values
0 missing
ATS8inumeric7 unique values
0 missing
ATS8mnumeric7 unique values
0 missing
ATS8pnumeric7 unique values
0 missing
ATS8snumeric7 unique values
0 missing
ATS8vnumeric6 unique values
0 missing
ATSC1enumeric6 unique values
0 missing
ATSC1inumeric7 unique values
0 missing
ATSC1mnumeric7 unique values
0 missing
ATSC1pnumeric7 unique values
0 missing
ATSC1snumeric7 unique values
0 missing
ATSC1vnumeric6 unique values
0 missing
ATSC2enumeric7 unique values
0 missing
ATSC2inumeric7 unique values
0 missing
ATSC2mnumeric7 unique values
0 missing
ATSC2pnumeric7 unique values
0 missing
ATSC2snumeric7 unique values
0 missing
ATSC2vnumeric6 unique values
0 missing
ATSC3enumeric7 unique values
0 missing
ATSC3inumeric7 unique values
0 missing
ATSC3mnumeric7 unique values
0 missing
ATSC3pnumeric7 unique values
0 missing
ATSC3snumeric7 unique values
0 missing
ATSC3vnumeric6 unique values
0 missing
ATSC4enumeric7 unique values
0 missing
ATSC4inumeric7 unique values
0 missing
ATSC4mnumeric7 unique values
0 missing
ATSC4pnumeric7 unique values
0 missing
ATSC4snumeric7 unique values
0 missing
ATSC4vnumeric6 unique values
0 missing
ATSC5enumeric7 unique values
0 missing
ATSC5inumeric7 unique values
0 missing
ATSC5mnumeric7 unique values
0 missing
ATSC5pnumeric7 unique values
0 missing
ATSC5snumeric7 unique values
0 missing
ATSC5vnumeric6 unique values
0 missing
ATSC6enumeric7 unique values
0 missing
ATSC6inumeric7 unique values
0 missing
ATSC6mnumeric7 unique values
0 missing
ATSC6pnumeric7 unique values
0 missing
ATSC6snumeric7 unique values
0 missing
ATSC6vnumeric6 unique values
0 missing
ATSC7enumeric7 unique values
0 missing
ATSC7inumeric7 unique values
0 missing
ATSC7mnumeric7 unique values
0 missing
ATSC7pnumeric7 unique values
0 missing
ATSC7snumeric7 unique values
0 missing
ATSC7vnumeric6 unique values
0 missing
ATSC8enumeric7 unique values
0 missing
ATSC8inumeric7 unique values
0 missing
ATSC8mnumeric7 unique values
0 missing
ATSC8pnumeric7 unique values
0 missing
ATSC8snumeric7 unique values
0 missing
ATSC8vnumeric6 unique values
0 missing
B.112numeric2 unique values
0 missing
BACnumeric6 unique values
0 missing
BBInumeric7 unique values
0 missing
BIC0numeric7 unique values
0 missing
BIC1numeric7 unique values
0 missing
BIC2numeric7 unique values
0 missing
BIC3numeric7 unique values
0 missing
BIC4numeric7 unique values
0 missing

107 properties

10
Number of instances (rows) of the dataset.
118
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
117
Number of numeric attributes.
1
Number of nominal attributes.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
147.86
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
-0.09
Second quartile (Median) of skewness among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
11.8
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of binary attributes.
0.32
Second quartile (Median) of standard deviation of attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
The maximum number of distinct values among attributes of the nominal type.
-1.54
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
3.16
Maximum skewness among attributes of the numeric type.
0.02
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
1.55
Third quartile of kurtosis among attributes of the numeric type.
0.56
Average class difference between consecutive instances.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
43.55
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
99.15
Percentage of numeric attributes.
6.34
Third quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.85
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
1.06
Mean kurtosis among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
0.5
Third quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
13.22
Mean of means among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-0.44
First quartile of kurtosis among attributes of the numeric type.
1.91
Third quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
1.84
First quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Standard deviation of the number of distinct values among attributes of the nominal type.
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Average number of distinct values among the attributes of the nominal type.
-0.59
First quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.14
Mean skewness among attributes of the numeric type.
0.25
First quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Percentage of instances belonging to the most frequent class.
3.22
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Entropy of the target attribute values.
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.29
Second quartile (Median) of kurtosis among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
-1.2
Minimum kurtosis among attributes of the numeric type.
4.11
Second quartile (Median) of means among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
10
Maximum kurtosis among attributes of the numeric type.
-0.08
Minimum of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task