Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5387

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5387

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5387 (TID: 100968), and it has 160 rows and 61 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

63 features

pXC50 (target)numeric115 unique values
0 missing
molecule_id (row identifier)nominal160 unique values
0 missing
SpDiam_EA.bo.numeric55 unique values
0 missing
Eig07_EA.bo.numeric82 unique values
0 missing
Eig01_EA.bo.numeric54 unique values
0 missing
SM11_AEA.ri.numeric54 unique values
0 missing
SpMax_EA.bo.numeric54 unique values
0 missing
DLS_consnumeric25 unique values
0 missing
SM15_EA.bo.numeric92 unique values
0 missing
Eig06_AEA.bo.numeric89 unique values
0 missing
Eig08_AEA.bo.numeric76 unique values
0 missing
SM13_EA.bo.numeric94 unique values
0 missing
SM14_EA.bo.numeric93 unique values
0 missing
SM11_EA.bo.numeric96 unique values
0 missing
SM12_EA.bo.numeric94 unique values
0 missing
Eig13_AEA.bo.numeric69 unique values
0 missing
Eig08_EAnumeric66 unique values
0 missing
SM02_AEA.dm.numeric66 unique values
0 missing
RBFnumeric61 unique values
0 missing
GATS5mnumeric110 unique values
0 missing
nRCONHRnumeric3 unique values
0 missing
nRCOORnumeric2 unique values
0 missing
PW3numeric46 unique values
0 missing
S3Knumeric115 unique values
0 missing
SdsCHnumeric18 unique values
0 missing
SpMax1_Bh.e.numeric61 unique values
0 missing
SpMax1_Bh.i.numeric66 unique values
0 missing
SpMax1_Bh.p.numeric73 unique values
0 missing
SpMax1_Bh.v.numeric70 unique values
0 missing
X2Anumeric41 unique values
0 missing
X3Anumeric35 unique values
0 missing
X4Anumeric33 unique values
0 missing
X5Anumeric28 unique values
0 missing
SM03_EA.bo.numeric48 unique values
0 missing
Eig13_EA.bo.numeric71 unique values
0 missing
nCrtnumeric7 unique values
0 missing
nCtnumeric6 unique values
0 missing
Chi1_EA.dm.numeric107 unique values
0 missing
Eig07_AEA.bo.numeric76 unique values
0 missing
SM09_EA.bo.numeric93 unique values
0 missing
Eig08_EA.bo.numeric82 unique values
0 missing
Eig09_AEA.bo.numeric74 unique values
0 missing
GGI10numeric81 unique values
0 missing
Eig08_AEA.ri.numeric101 unique values
0 missing
SpMax1_Bh.m.numeric78 unique values
0 missing
C.003numeric5 unique values
0 missing
Eig09_EA.ed.numeric85 unique values
0 missing
SM04_AEA.ri.numeric85 unique values
0 missing
piPC06numeric97 unique values
0 missing
piPC08numeric99 unique values
0 missing
piPC09numeric101 unique values
0 missing
piPC10numeric99 unique values
0 missing
SM10_EA.bo.numeric93 unique values
0 missing
Eig14_AEA.ri.numeric91 unique values
0 missing
Eig14_EA.ri.numeric91 unique values
0 missing
C.034numeric3 unique values
0 missing
D.Dtr09numeric50 unique values
0 missing
SM03_AEA.bo.numeric84 unique values
0 missing
C.016numeric3 unique values
0 missing
Eig02_AEA.bo.numeric75 unique values
0 missing
NdsCHnumeric3 unique values
0 missing
P_VSA_LogP_2numeric60 unique values
0 missing
PW4numeric48 unique values
0 missing

107 properties

160
Number of instances (rows) of the dataset.
63
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
62
Number of numeric attributes.
1
Number of nominal attributes.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
59.3
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
-0.51
Second quartile (Median) of skewness among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.39
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of binary attributes.
0.41
Second quartile (Median) of standard deviation of attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
The maximum number of distinct values among attributes of the nominal type.
-1.58
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
3.09
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
1.26
Third quartile of kurtosis among attributes of the numeric type.
0.28
Average class difference between consecutive instances.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
68.71
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
98.41
Percentage of numeric attributes.
6.31
Third quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.59
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.9
Mean kurtosis among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
0.58
Third quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
6
Mean of means among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-0.28
First quartile of kurtosis among attributes of the numeric type.
0.78
Third quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.66
First quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Standard deviation of the number of distinct values among attributes of the nominal type.
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Average number of distinct values among the attributes of the nominal type.
-0.93
First quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
-0
Mean skewness among attributes of the numeric type.
0.15
First quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Percentage of instances belonging to the most frequent class.
1.97
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Entropy of the target attribute values.
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.13
Second quartile (Median) of kurtosis among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
-1.1
Minimum kurtosis among attributes of the numeric type.
3.19
Second quartile (Median) of means among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
9.85
Maximum kurtosis among attributes of the numeric type.
0.07
Minimum of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task