Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3775

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3775

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3775 (TID: 10332), and it has 244 rows and 67 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

69 features

pXC50 (target)numeric162 unique values
0 missing
molecule_id (row identifier)nominal244 unique values
0 missing
MAXDNnumeric196 unique values
0 missing
ATSC5enumeric182 unique values
0 missing
SssOnumeric100 unique values
0 missing
Eig06_EA.dm.numeric9 unique values
0 missing
DBInumeric59 unique values
0 missing
ATSC1mnumeric198 unique values
0 missing
ATSC6snumeric223 unique values
0 missing
Eig03_EA.dm.numeric35 unique values
0 missing
ATS5snumeric208 unique values
0 missing
ATS2snumeric195 unique values
0 missing
Eig07_EA.ri.numeric174 unique values
0 missing
SdsNnumeric45 unique values
0 missing
GATS5snumeric203 unique values
0 missing
ATSC2enumeric167 unique values
0 missing
NdsNnumeric2 unique values
0 missing
SpMax1_Bh.s.numeric35 unique values
0 missing
GATS1pnumeric176 unique values
0 missing
SpMAD_EA.dm.numeric143 unique values
0 missing
MATS1inumeric144 unique values
0 missing
Eig04_AEA.dm.numeric173 unique values
0 missing
Eig11_AEA.dm.numeric172 unique values
0 missing
H.052numeric11 unique values
0 missing
GATS1inumeric171 unique values
0 missing
SsssCHnumeric109 unique values
0 missing
ATSC2snumeric224 unique values
0 missing
GATS5mnumeric175 unique values
0 missing
SpAD_EA.dm.numeric98 unique values
0 missing
GGI7numeric135 unique values
0 missing
Eig12_AEA.dm.numeric182 unique values
0 missing
Eig13_AEA.dm.numeric176 unique values
0 missing
ON1Vnumeric199 unique values
0 missing
X2vnumeric218 unique values
0 missing
C.008numeric6 unique values
0 missing
SPInumeric187 unique values
0 missing
ATSC6enumeric195 unique values
0 missing
GGI9numeric130 unique values
0 missing
ATS6pnumeric210 unique values
0 missing
ATSC8pnumeric222 unique values
0 missing
Eta_Cnumeric224 unique values
0 missing
Eig14_AEA.ed.numeric151 unique values
0 missing
MWC07numeric173 unique values
0 missing
Eig15_AEA.bo.numeric162 unique values
0 missing
Eig14_EA.ed.numeric160 unique values
0 missing
SM09_AEA.ri.numeric160 unique values
0 missing
C.019numeric3 unique values
0 missing
Eta_alpha_Anumeric61 unique values
0 missing
Eig14_AEA.dm.numeric176 unique values
0 missing
ATS8vnumeric206 unique values
0 missing
Eig05_EA.dm.numeric15 unique values
0 missing
Eig13_AEA.ed.numeric143 unique values
0 missing
SAtotnumeric198 unique values
0 missing
VvdwZAZnumeric198 unique values
0 missing
X0vnumeric198 unique values
0 missing
ATS6snumeric205 unique values
0 missing
ATS7vnumeric205 unique values
0 missing
Eig08_AEA.ri.numeric172 unique values
0 missing
Eig08_EAnumeric155 unique values
0 missing
SM02_AEA.dm.numeric155 unique values
0 missing
SpMax8_Bh.e.numeric151 unique values
0 missing
SpMax8_Bh.v.numeric149 unique values
0 missing
Eig14_EA.bo.numeric169 unique values
0 missing
Eig15_AEA.dm.numeric181 unique values
0 missing
Eta_betaSnumeric64 unique values
0 missing
Eig08_EA.ri.numeric170 unique values
0 missing
nHnumeric49 unique values
0 missing
P_VSA_e_1numeric60 unique values
0 missing
P_VSA_m_1numeric53 unique values
0 missing

107 properties

244
Number of instances (rows) of the dataset.
69
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
68
Number of numeric attributes.
1
Number of nominal attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0
Number of binary attributes.
-0.13
First quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Standard deviation of the number of distinct values among attributes of the nominal type.
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Average number of distinct values among the attributes of the nominal type.
0.33
First quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.78
Mean skewness among attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Percentage of instances belonging to the most frequent class.
11.96
Mean standard deviation of attributes of the numeric type.
1.31
Second quartile (Median) of kurtosis among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Entropy of the target attribute values.
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
1.95
Second quartile (Median) of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
-1.21
Minimum kurtosis among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
32.71
Maximum kurtosis among attributes of the numeric type.
-0.47
Minimum of means among attributes of the numeric type.
0.34
Second quartile (Median) of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
573.07
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
0.63
Second quartile (Median) of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.28
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
The maximum number of distinct values among attributes of the nominal type.
-3.3
Minimum skewness among attributes of the numeric type.
0
Percentage of missing values.
5.26
Third quartile of kurtosis among attributes of the numeric type.
0.43
Average class difference between consecutive instances.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
5.58
Maximum skewness among attributes of the numeric type.
0.02
Minimum standard deviation of attributes of the numeric type.
98.55
Percentage of numeric attributes.
7.11
Third quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
175.74
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
1.45
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
First quartile of entropy among attributes.
1.59
Third quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
4.2
Mean kurtosis among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.34
First quartile of kurtosis among attributes of the numeric type.
2.36
Third quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
29.26
Mean of means among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.49
First quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task