Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2384

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2384

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2384 (TID: 12170), and it has 108 rows and 62 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

64 features

pXC50 (target)numeric81 unique values
0 missing
molecule_id (row identifier)nominal108 unique values
0 missing
P_VSA_p_3numeric94 unique values
0 missing
P_VSA_v_3numeric94 unique values
0 missing
D.Dtr06numeric79 unique values
0 missing
ATSC6pnumeric105 unique values
0 missing
ALOGPnumeric97 unique values
0 missing
ALOGP2numeric98 unique values
0 missing
SpMin3_Bh.i.numeric76 unique values
0 missing
CATS2D_08_LLnumeric14 unique values
0 missing
P_VSA_e_2numeric94 unique values
0 missing
P_VSA_i_2numeric93 unique values
0 missing
P_VSA_m_2numeric94 unique values
0 missing
ATSC5pnumeric108 unique values
0 missing
AMRnumeric98 unique values
0 missing
ATS1pnumeric90 unique values
0 missing
ATS1vnumeric92 unique values
0 missing
ATS2pnumeric89 unique values
0 missing
ATS3pnumeric94 unique values
0 missing
ATS4pnumeric99 unique values
0 missing
ATS4vnumeric101 unique values
0 missing
ATS5pnumeric103 unique values
0 missing
ATS5vnumeric105 unique values
0 missing
ATS6pnumeric99 unique values
0 missing
ATSC6inumeric101 unique values
0 missing
ATSC8inumeric105 unique values
0 missing
CATS2D_06_ALnumeric17 unique values
0 missing
nCnumeric22 unique values
0 missing
Spnumeric92 unique values
0 missing
SpMax5_Bh.m.numeric85 unique values
0 missing
SpMax5_Bh.v.numeric84 unique values
0 missing
SpMin4_Bh.e.numeric60 unique values
0 missing
Svnumeric92 unique values
0 missing
TPCnumeric62 unique values
0 missing
VvdwMGnumeric93 unique values
0 missing
Vxnumeric93 unique values
0 missing
X0vnumeric97 unique values
0 missing
X1Kupnumeric100 unique values
0 missing
X1MulPernumeric99 unique values
0 missing
X1Pernumeric100 unique values
0 missing
X5numeric80 unique values
0 missing
SpMax8_Bh.v.numeric70 unique values
0 missing
SpMax3_Bh.v.numeric81 unique values
0 missing
Xindexnumeric61 unique values
0 missing
P_VSA_s_3numeric85 unique values
0 missing
SpMin5_Bh.m.numeric75 unique values
0 missing
ATS2vnumeric94 unique values
0 missing
ATS3vnumeric94 unique values
0 missing
ATS6vnumeric99 unique values
0 missing
ATS7pnumeric100 unique values
0 missing
Chi0_AEA.bo.numeric69 unique values
0 missing
Chi0_AEA.dm.numeric69 unique values
0 missing
Chi0_AEA.ed.numeric69 unique values
0 missing
Chi0_AEA.ri.numeric69 unique values
0 missing
Chi0_EAnumeric69 unique values
0 missing
Chi0_EA.ed.numeric80 unique values
0 missing
Chi0_EA.ri.numeric99 unique values
0 missing
Chi1_AEA.bo.numeric77 unique values
0 missing
Chi1_AEA.dm.numeric77 unique values
0 missing
Chi1_AEA.ed.numeric77 unique values
0 missing
Chi1_AEA.ri.numeric77 unique values
0 missing
Chi1_EAnumeric77 unique values
0 missing
Chi1_EA.ed.numeric79 unique values
0 missing
CIDnumeric63 unique values
0 missing

107 properties

108
Number of instances (rows) of the dataset.
64
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
63
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of entropy among attributes.
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
The maximum number of distinct values among attributes of the nominal type.
-1.44
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
-0.1
Third quartile of kurtosis among attributes of the numeric type.
-0.02
Average class difference between consecutive instances.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
1.89
Maximum skewness among attributes of the numeric type.
0.07
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
98.44
Percentage of numeric attributes.
19.04
Third quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
144.91
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
1.56
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
First quartile of entropy among attributes.
-0.32
Third quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
-0.08
Mean kurtosis among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-0.51
First quartile of kurtosis among attributes of the numeric type.
4.03
Third quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
37.27
Mean of means among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
3.87
First quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0
Number of binary attributes.
-0.66
First quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Standard deviation of the number of distinct values among attributes of the nominal type.
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Average number of distinct values among the attributes of the nominal type.
0.3
First quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
-0.36
Mean skewness among attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Percentage of instances belonging to the most frequent class.
10.89
Mean standard deviation of attributes of the numeric type.
-0.38
Second quartile (Median) of kurtosis among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Entropy of the target attribute values.
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
8.1
Second quartile (Median) of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
-0.79
Minimum kurtosis among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
8.38
Maximum kurtosis among attributes of the numeric type.
0.32
Minimum of means among attributes of the numeric type.
-0.41
Second quartile (Median) of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
472.14
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
2.23
Second quartile (Median) of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.59
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of binary attributes.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task