Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5244

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5244

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5244 (TID: 18032), and it has 26 rows and 168 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

170 features

pXC50 (target)numeric23 unique values
0 missing
molecule_id (row identifier)nominal26 unique values
0 missing
AECCnumeric16 unique values
0 missing
MATS1mnumeric17 unique values
0 missing
MATS2inumeric17 unique values
0 missing
SdsNnumeric23 unique values
0 missing
Eig03_AEA.ed.numeric16 unique values
0 missing
Eig03_AEA.ri.numeric22 unique values
0 missing
Eig03_EA.ed.numeric17 unique values
0 missing
Eig08_EA.bo.numeric15 unique values
0 missing
piPC06numeric17 unique values
0 missing
piPC07numeric18 unique values
0 missing
piPC09numeric18 unique values
0 missing
SM12_AEA.dm.numeric17 unique values
0 missing
SpMax8_Bh.e.numeric21 unique values
0 missing
SpMax8_Bh.i.numeric20 unique values
0 missing
Eig02_EA.ri.numeric22 unique values
0 missing
SpMin2_Bh.p.numeric14 unique values
0 missing
Eig08_AEA.bo.numeric14 unique values
0 missing
SpMin3_Bh.p.numeric21 unique values
0 missing
ATS8mnumeric23 unique values
0 missing
ATSC4pnumeric23 unique values
0 missing
ATSC5inumeric22 unique values
0 missing
ATSC5pnumeric23 unique values
0 missing
GATS8snumeric23 unique values
0 missing
SpAD_EA.bo.numeric18 unique values
0 missing
X2numeric17 unique values
0 missing
ATS8inumeric23 unique values
0 missing
SpMax8_Bh.p.numeric22 unique values
0 missing
SpMax8_Bh.v.numeric22 unique values
0 missing
SpMin7_Bh.m.numeric23 unique values
0 missing
SpMin8_Bh.v.numeric22 unique values
0 missing
SpMax2_Bh.i.numeric19 unique values
0 missing
ATS7enumeric23 unique values
0 missing
ATS7inumeric22 unique values
0 missing
BIC0numeric17 unique values
0 missing
Eig01_AEA.bo.numeric18 unique values
0 missing
Eig01_EA.bo.numeric17 unique values
0 missing
MATS3mnumeric20 unique values
0 missing
Mvnumeric14 unique values
0 missing
SIC0numeric17 unique values
0 missing
SM11_AEA.ri.numeric17 unique values
0 missing
SpDiam_EA.bo.numeric17 unique values
0 missing
SpMAD_AEA.dm.numeric18 unique values
0 missing
SpMax_AEA.bo.numeric18 unique values
0 missing
SpMax_EA.bo.numeric17 unique values
0 missing
SpMin8_Bh.m.numeric20 unique values
0 missing
SssNHnumeric20 unique values
0 missing
Eig03_EA.ri.numeric23 unique values
0 missing
SpMin1_Bh.p.numeric15 unique values
0 missing
GGI10numeric5 unique values
0 missing
ICRnumeric16 unique values
0 missing
SpMAD_EA.ri.numeric18 unique values
0 missing
SpMin8_Bh.p.numeric22 unique values
0 missing
MATS4mnumeric21 unique values
0 missing
ATS6enumeric22 unique values
0 missing
ATS6inumeric23 unique values
0 missing
Eig02_EA.bo.numeric17 unique values
0 missing
SM12_AEA.ri.numeric17 unique values
0 missing
SpMax1_Bh.i.numeric18 unique values
0 missing
SpMax1_Bh.p.numeric21 unique values
0 missing
SpMax1_Bh.v.numeric19 unique values
0 missing
SpMin7_Bh.v.numeric21 unique values
0 missing
SsCH3numeric19 unique values
0 missing
SsOHnumeric21 unique values
0 missing
CATS2D_09_DLnumeric4 unique values
0 missing
Eig15_EA.dm.numeric7 unique values
0 missing
SM11_EA.bo.numeric18 unique values
0 missing
SM12_EA.bo.numeric17 unique values
0 missing
SM13_EA.bo.numeric18 unique values
0 missing
SM14_EA.bo.numeric18 unique values
0 missing
SM15_EA.bo.numeric18 unique values
0 missing
SpMax1_Bh.e.numeric20 unique values
0 missing
SpMaxA_AEA.dm.numeric12 unique values
0 missing
SpMaxA_EA.dm.numeric14 unique values
0 missing
SpMin1_Bh.e.numeric17 unique values
0 missing
SpMin1_Bh.i.numeric16 unique values
0 missing
ATS5inumeric23 unique values
0 missing
CSInumeric16 unique values
0 missing
ECCnumeric15 unique values
0 missing
Eig07_EAnumeric15 unique values
0 missing
Eig07_EA.ed.numeric17 unique values
0 missing
Eig08_AEA.ed.numeric16 unique values
0 missing
Eig08_AEA.ri.numeric20 unique values
0 missing
Eig08_EAnumeric15 unique values
0 missing
Eig08_EA.ri.numeric19 unique values
0 missing
Eig09_AEA.ri.numeric22 unique values
0 missing
Eig09_EAnumeric17 unique values
0 missing
Eig09_EA.bo.numeric18 unique values
0 missing
Eig09_EA.ed.numeric17 unique values
0 missing
Eig09_EA.ri.numeric21 unique values
0 missing
Eig10_AEA.bo.numeric14 unique values
0 missing
Eig10_AEA.ri.numeric19 unique values
0 missing
Eig10_EAnumeric13 unique values
0 missing
Eig10_EA.bo.numeric17 unique values
0 missing
Eig10_EA.ed.numeric16 unique values
0 missing
Eig10_EA.ri.numeric18 unique values
0 missing
Eig11_AEA.dm.numeric21 unique values
0 missing
Eig11_EA.ed.numeric16 unique values
0 missing
Eig12_AEA.bo.numeric18 unique values
0 missing
Eig13_AEA.ri.numeric20 unique values
0 missing
Eig13_EAnumeric16 unique values
0 missing
Eig13_EA.ri.numeric18 unique values
0 missing
Eig14_AEA.ri.numeric22 unique values
0 missing
Eig14_EAnumeric17 unique values
0 missing
Eig14_EA.bo.numeric18 unique values
0 missing
Eig14_EA.ed.numeric16 unique values
0 missing
Eig15_AEA.bo.numeric13 unique values
0 missing
Eig15_AEA.ri.numeric19 unique values
0 missing
Eig15_EAnumeric15 unique values
0 missing
Eig15_EA.bo.numeric18 unique values
0 missing
Eig15_EA.ed.numeric16 unique values
0 missing
GGI9numeric11 unique values
0 missing
GMTInumeric17 unique values
0 missing
IDEnumeric17 unique values
0 missing
IDETnumeric17 unique values
0 missing
IDMTnumeric17 unique values
0 missing
LPRSnumeric17 unique values
0 missing
MDDDnumeric17 unique values
0 missing
MPC09numeric15 unique values
0 missing
MPC10numeric16 unique values
0 missing
MSDnumeric17 unique values
0 missing
piPC10numeric18 unique values
0 missing
RDCHInumeric16 unique values
0 missing
SM02_AEA.dm.numeric15 unique values
0 missing
SM02_AEA.ri.numeric17 unique values
0 missing
SM03_AEA.dm.numeric17 unique values
0 missing
SM04_AEA.dm.numeric13 unique values
0 missing
SM04_AEA.ri.numeric17 unique values
0 missing
SM05_AEA.ri.numeric16 unique values
0 missing
SM06_AEA.ri.numeric16 unique values
0 missing
SM07_AEA.dm.numeric16 unique values
0 missing
SM08_AEA.dm.numeric17 unique values
0 missing
SM09_AEA.dm.numeric15 unique values
0 missing
SM09_AEA.ri.numeric16 unique values
0 missing
SM10_AEA.ri.numeric16 unique values
0 missing
SM15_AEA.bo.numeric15 unique values
0 missing
SMTInumeric17 unique values
0 missing
SMTIVnumeric23 unique values
0 missing
SpAD_AEA.ed.numeric17 unique values
0 missing
SpMax6_Bh.p.numeric21 unique values
0 missing
SpMax6_Bh.v.numeric22 unique values
0 missing
SpMax7_Bh.e.numeric21 unique values
0 missing
SpMax7_Bh.p.numeric22 unique values
0 missing
SpMax7_Bh.v.numeric23 unique values
0 missing
SpMax8_Bh.m.numeric22 unique values
0 missing
SpMaxA_AEA.bo.numeric15 unique values
0 missing
SpMaxA_AEA.ed.numeric15 unique values
0 missing
SpMaxA_AEA.ri.numeric17 unique values
0 missing
SpMaxA_EA.bo.numeric17 unique values
0 missing
SpMaxA_EA.ed.numeric17 unique values
0 missing
SpMaxA_EA.ri.numeric17 unique values
0 missing
SpMin4_Bh.e.numeric20 unique values
0 missing
SpMin6_Bh.m.numeric22 unique values
0 missing
SpMin7_Bh.e.numeric22 unique values
0 missing
SpMin7_Bh.i.numeric22 unique values
0 missing
SpMin7_Bh.p.numeric21 unique values
0 missing
Uindexnumeric17 unique values
0 missing
UNIPnumeric15 unique values
0 missing
VARnumeric11 unique values
0 missing
X3numeric17 unique values
0 missing
Xunumeric17 unique values
0 missing
AACnumeric17 unique values
0 missing
ATS1inumeric18 unique values
0 missing
ATS2inumeric18 unique values
0 missing
ATS4enumeric20 unique values
0 missing
ATS4inumeric21 unique values
0 missing
ATSC1inumeric17 unique values
0 missing
ATSC3vnumeric19 unique values
0 missing
ATSC4mnumeric23 unique values
0 missing

107 properties

26
Number of instances (rows) of the dataset.
170
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
169
Number of numeric attributes.
1
Number of nominal attributes.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
5319.81
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0.62
Second quartile (Median) of skewness among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
6.54
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of binary attributes.
0.4
Second quartile (Median) of standard deviation of attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
The maximum number of distinct values among attributes of the nominal type.
-3.99
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
3.17
Maximum skewness among attributes of the numeric type.
0.02
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
2.62
Third quartile of kurtosis among attributes of the numeric type.
-0
Average class difference between consecutive instances.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
3245.72
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
99.41
Percentage of numeric attributes.
4.26
Third quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.59
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
1.51
Mean kurtosis among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
1.14
Third quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
102.82
Mean of means among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-0.67
First quartile of kurtosis among attributes of the numeric type.
0.59
Third quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.21
First quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Standard deviation of the number of distinct values among attributes of the nominal type.
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Average number of distinct values among the attributes of the nominal type.
0.04
First quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.56
Mean skewness among attributes of the numeric type.
0.17
First quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Percentage of instances belonging to the most frequent class.
56.27
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Entropy of the target attribute values.
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.21
Second quartile (Median) of kurtosis among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
-1.69
Minimum kurtosis among attributes of the numeric type.
1.87
Second quartile (Median) of means among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
17.94
Maximum kurtosis among attributes of the numeric type.
-4.4
Minimum of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task