Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5703

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5703

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5703 (TID: 101508), and it has 532 rows and 68 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

70 features

pXC50 (target)numeric38 unique values
0 missing
molecule_id (row identifier)nominal532 unique values
0 missing
Chi0_EA.dm.numeric467 unique values
0 missing
Chi1_EA.dm.numeric474 unique values
0 missing
ATSC3mnumeric515 unique values
0 missing
Eig06_EAnumeric361 unique values
0 missing
SM14_AEA.bo.numeric361 unique values
0 missing
ATS5inumeric433 unique values
0 missing
Wapnumeric464 unique values
0 missing
TPCnumeric412 unique values
0 missing
SpMax7_Bh.m.numeric349 unique values
0 missing
Eig08_AEA.dm.numeric388 unique values
0 missing
Eig10_AEA.dm.numeric356 unique values
0 missing
Eig07_AEA.dm.numeric393 unique values
0 missing
Eig09_AEA.dm.numeric392 unique values
0 missing
Eig06_AEA.ri.numeric414 unique values
0 missing
Eig06_EA.ed.numeric451 unique values
0 missing
SM15_AEA.dm.numeric451 unique values
0 missing
IACnumeric467 unique values
0 missing
TIC0numeric467 unique values
0 missing
GGI8numeric290 unique values
0 missing
SpMax7_Bh.p.numeric321 unique values
0 missing
Eig06_EA.ri.numeric415 unique values
0 missing
ATS5enumeric431 unique values
0 missing
MPC10numeric236 unique values
0 missing
piPC03numeric349 unique values
0 missing
ATSC4pnumeric514 unique values
0 missing
SpMin7_Bh.v.numeric328 unique values
0 missing
SpMax8_Bh.m.numeric329 unique values
0 missing
SpMin8_Bh.v.numeric309 unique values
0 missing
SpMax8_Bh.i.numeric316 unique values
0 missing
SpMax8_Bh.p.numeric311 unique values
0 missing
Eig08_EA.ed.numeric422 unique values
0 missing
SM03_AEA.ri.numeric422 unique values
0 missing
ATS8mnumeric443 unique values
0 missing
Eta_Lnumeric486 unique values
0 missing
P_VSA_i_3numeric320 unique values
0 missing
Eig08_AEA.ed.numeric390 unique values
0 missing
ATS2mnumeric387 unique values
0 missing
Eig10_AEA.ed.numeric354 unique values
0 missing
Eig06_AEA.bo.numeric374 unique values
0 missing
Eig07_AEA.ri.numeric410 unique values
0 missing
ATS3mnumeric399 unique values
0 missing
SpMin7_Bh.s.numeric251 unique values
0 missing
CATS2D_02_ALnumeric15 unique values
0 missing
Eig11_AEA.dm.numeric340 unique values
0 missing
S1Knumeric434 unique values
0 missing
SpMin7_Bh.m.numeric316 unique values
0 missing
MWC05numeric369 unique values
0 missing
Eig06_AEA.dm.numeric408 unique values
0 missing
ATSC5mnumeric524 unique values
0 missing
X3vnumeric494 unique values
0 missing
SsssNnumeric118 unique values
0 missing
SpMax8_Bh.v.numeric310 unique values
0 missing
SpMax7_Bh.v.numeric325 unique values
0 missing
ATS1mnumeric369 unique values
0 missing
SpMin7_Bh.e.numeric314 unique values
0 missing
SpMin7_Bh.i.numeric309 unique values
0 missing
RDSQnumeric489 unique values
0 missing
Eig08_EAnumeric368 unique values
0 missing
SM02_AEA.dm.numeric368 unique values
0 missing
SpAD_AEA.dm.numeric510 unique values
0 missing
Eig07_EA.ri.numeric402 unique values
0 missing
MWC04numeric277 unique values
0 missing
Eig07_EA.ed.numeric444 unique values
0 missing
SM02_AEA.ri.numeric444 unique values
0 missing
Eig09_EA.bo.numeric365 unique values
0 missing
SM04_EA.bo.numeric373 unique values
0 missing
SpMin7_Bh.p.numeric330 unique values
0 missing
ATSC5pnumeric514 unique values
0 missing

107 properties

532
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
69
Number of numeric attributes.
1
Number of nominal attributes.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
-0.75
Minimum kurtosis among attributes of the numeric type.
3.62
Second quartile (Median) of means among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
127.79
Maximum kurtosis among attributes of the numeric type.
0.27
Minimum of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
38665.9
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
-0.13
Second quartile (Median) of skewness among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.13
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of binary attributes.
0.41
Second quartile (Median) of standard deviation of attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
The maximum number of distinct values among attributes of the nominal type.
-2.2
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
10.27
Maximum skewness among attributes of the numeric type.
0.15
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
1.84
Third quartile of kurtosis among attributes of the numeric type.
0.73
Average class difference between consecutive instances.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
92984.04
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
98.57
Percentage of numeric attributes.
6.28
Third quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.43
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
2.98
Mean kurtosis among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
0.52
Third quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
574.71
Mean of means among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-0.16
First quartile of kurtosis among attributes of the numeric type.
1.34
Third quartile of standard deviation of attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
1.7
First quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Standard deviation of the number of distinct values among attributes of the nominal type.
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Average number of distinct values among the attributes of the nominal type.
-0.78
First quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.02
Mean skewness among attributes of the numeric type.
0.25
First quartile of standard deviation of attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Percentage of instances belonging to the most frequent class.
1351.8
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Entropy of the target attribute values.
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.67
Second quartile (Median) of kurtosis among attributes of the numeric type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task