Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1744528

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL1744528

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL1744528 (TID: 104109), and it has 10 rows and 162 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

164 features

pXC50 (target)numeric8 unique values
0 missing
molecule_id (row identifier)nominal10 unique values
0 missing
ALOGPnumeric10 unique values
0 missing
ALOGP2numeric10 unique values
0 missing
AMRnumeric10 unique values
0 missing
ATS1mnumeric10 unique values
0 missing
ATS1pnumeric10 unique values
0 missing
ATS1snumeric10 unique values
0 missing
ATS1vnumeric10 unique values
0 missing
ATS2mnumeric10 unique values
0 missing
ATS2pnumeric10 unique values
0 missing
ATS2snumeric10 unique values
0 missing
ATS2vnumeric10 unique values
0 missing
ATS3mnumeric10 unique values
0 missing
ATS3vnumeric10 unique values
0 missing
ATS4mnumeric10 unique values
0 missing
ATS4vnumeric9 unique values
0 missing
ATS5mnumeric10 unique values
0 missing
ATS5vnumeric10 unique values
0 missing
ATS6mnumeric10 unique values
0 missing
ATS6vnumeric10 unique values
0 missing
ATS7mnumeric10 unique values
0 missing
ATS8mnumeric10 unique values
0 missing
ATS8vnumeric10 unique values
0 missing
ATSC1snumeric10 unique values
0 missing
ATSC3enumeric10 unique values
0 missing
BBInumeric9 unique values
0 missing
BIC1numeric10 unique values
0 missing
BIDnumeric7 unique values
0 missing
BLTA96numeric9 unique values
0 missing
BLTD48numeric9 unique values
0 missing
BLTF96numeric8 unique values
0 missing
C.002numeric4 unique values
0 missing
C.006numeric4 unique values
0 missing
C.025numeric2 unique values
0 missing
CATS2D_01_LLnumeric6 unique values
0 missing
CATS2D_02_LLnumeric6 unique values
0 missing
CATS2D_03_LLnumeric7 unique values
0 missing
CATS2D_06_ALnumeric7 unique values
0 missing
CATS2D_07_AAnumeric3 unique values
0 missing
CATS2D_07_LLnumeric8 unique values
0 missing
CATS2D_08_LLnumeric8 unique values
0 missing
CATS2D_09_ALnumeric6 unique values
0 missing
CATS2D_09_LLnumeric8 unique values
0 missing
CENTnumeric9 unique values
0 missing
Chi1_AEA.bo.numeric9 unique values
0 missing
Chi1_AEA.dm.numeric9 unique values
0 missing
Chi1_AEA.ed.numeric9 unique values
0 missing
Chi1_AEA.ri.numeric9 unique values
0 missing
Chi1_EAnumeric9 unique values
0 missing
Chi1_EA.ri.numeric10 unique values
0 missing
CIC0numeric10 unique values
0 missing
CIC1numeric10 unique values
0 missing
CIDnumeric9 unique values
0 missing
D.Dtr10numeric9 unique values
0 missing
DLS_01numeric3 unique values
0 missing
DLS_consnumeric5 unique values
0 missing
Dznumeric8 unique values
0 missing
Eig02_EA.bo.numeric7 unique values
0 missing
Eig03_AEA.bo.numeric8 unique values
0 missing
Eig03_AEA.ed.numeric8 unique values
0 missing
Eig03_AEA.ri.numeric9 unique values
0 missing
Eig03_EAnumeric8 unique values
0 missing
Eig03_EA.ed.numeric8 unique values
0 missing
Eig03_EA.ri.numeric9 unique values
0 missing
Eig04_AEA.bo.numeric8 unique values
0 missing
Eig04_AEA.dm.numeric9 unique values
0 missing
Eig04_EA.bo.numeric8 unique values
0 missing
Eig05_AEA.bo.numeric9 unique values
0 missing
Eig05_AEA.ri.numeric10 unique values
0 missing
Eig05_EAnumeric9 unique values
0 missing
Eig05_EA.bo.numeric9 unique values
0 missing
Eig05_EA.ri.numeric10 unique values
0 missing
Eig06_AEA.bo.numeric8 unique values
0 missing
Eig06_AEA.dm.numeric8 unique values
0 missing
Eig06_AEA.ed.numeric9 unique values
0 missing
Eig06_AEA.ri.numeric10 unique values
0 missing
Eig06_EAnumeric9 unique values
0 missing
Eig06_EA.bo.numeric7 unique values
0 missing
Eig06_EA.ri.numeric10 unique values
0 missing
Eig07_AEA.bo.numeric8 unique values
0 missing
Eig07_AEA.ed.numeric9 unique values
0 missing
Eig07_AEA.ri.numeric10 unique values
0 missing
Eig07_EAnumeric9 unique values
0 missing
Eig07_EA.bo.numeric8 unique values
0 missing
Eig07_EA.ed.numeric9 unique values
0 missing
Eig07_EA.ri.numeric10 unique values
0 missing
Eig08_AEA.bo.numeric9 unique values
0 missing
Eig08_AEA.ed.numeric9 unique values
0 missing
Eig08_AEA.ri.numeric10 unique values
0 missing
Eig08_EA.bo.numeric9 unique values
0 missing
Eig08_EA.ed.numeric9 unique values
0 missing
Eig08_EA.ri.numeric10 unique values
0 missing
Eig09_AEA.bo.numeric8 unique values
0 missing
Eig09_AEA.ed.numeric9 unique values
0 missing
Eig09_AEA.ri.numeric9 unique values
0 missing
Eig09_EA.bo.numeric8 unique values
0 missing
Eig09_EA.ed.numeric9 unique values
0 missing
Eig09_EA.ri.numeric9 unique values
0 missing
Eig10_AEA.bo.numeric9 unique values
0 missing
Eig10_AEA.ed.numeric9 unique values
0 missing
Eig10_EA.bo.numeric9 unique values
0 missing
Eig10_EA.ed.numeric9 unique values
0 missing
Eig11_AEA.bo.numeric9 unique values
0 missing
Eig11_AEA.ed.numeric8 unique values
0 missing
Eig11_AEA.ri.numeric10 unique values
0 missing
Eig11_EAnumeric9 unique values
0 missing
Eig11_EA.bo.numeric9 unique values
0 missing
Eig11_EA.ed.numeric9 unique values
0 missing
Eig11_EA.ri.numeric10 unique values
0 missing
Eig12_AEA.bo.numeric9 unique values
0 missing
Eig12_AEA.ed.numeric9 unique values
0 missing
Eig12_AEA.ri.numeric10 unique values
0 missing
Eig12_EAnumeric9 unique values
0 missing
Eig12_EA.bo.numeric8 unique values
0 missing
Eig12_EA.ed.numeric9 unique values
0 missing
Eig12_EA.ri.numeric10 unique values
0 missing
Eig13_AEA.bo.numeric7 unique values
0 missing
Eig13_AEA.ed.numeric9 unique values
0 missing
Eig13_AEA.ri.numeric7 unique values
0 missing
Eig13_EAnumeric7 unique values
0 missing
Eig13_EA.bo.numeric6 unique values
0 missing
Eig13_EA.ed.numeric8 unique values
0 missing
Eig13_EA.ri.numeric7 unique values
0 missing
Eig14_AEA.bo.numeric9 unique values
0 missing
Eig14_AEA.ed.numeric8 unique values
0 missing
Eig14_EA.bo.numeric9 unique values
0 missing
Eig14_EA.ed.numeric9 unique values
0 missing
Eig15_AEA.ed.numeric8 unique values
0 missing
Eta_alphanumeric8 unique values
0 missing
Eta_alpha_Anumeric8 unique values
0 missing
Eta_betaP_Anumeric8 unique values
0 missing
Eta_F_Anumeric10 unique values
0 missing
Eta_FL_Anumeric9 unique values
0 missing
Eta_L_Anumeric10 unique values
0 missing
GATS1inumeric9 unique values
0 missing
GATS1snumeric9 unique values
0 missing
GATS2inumeric10 unique values
0 missing
GATS2mnumeric10 unique values
0 missing
GATS3mnumeric10 unique values
0 missing
GATS3pnumeric10 unique values
0 missing
GATS4inumeric10 unique values
0 missing
GATS4pnumeric9 unique values
0 missing
GATS4vnumeric10 unique values
0 missing
GATS5enumeric9 unique values
0 missing
GATS8inumeric10 unique values
0 missing
GATS8mnumeric10 unique values
0 missing
GATS8vnumeric10 unique values
0 missing
GGI10numeric9 unique values
0 missing
GGI7numeric9 unique values
0 missing
GGI9numeric8 unique values
0 missing
HDcpxnumeric9 unique values
0 missing
IC1numeric10 unique values
0 missing
IDDMnumeric9 unique values
0 missing
IDETnumeric9 unique values
0 missing
IDMnumeric9 unique values
0 missing
IDMTnumeric9 unique values
0 missing
IVDMnumeric9 unique values
0 missing
LLS_02numeric4 unique values
0 missing
LPRSnumeric9 unique values
0 missing
MATS1inumeric10 unique values
0 missing
MATS1pnumeric9 unique values
0 missing
MATS1vnumeric9 unique values
0 missing
MATS3inumeric10 unique values
0 missing

107 properties

10
Number of instances (rows) of the dataset.
164
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
163
Number of numeric attributes.
1
Number of nominal attributes.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
28710.51
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0.01
Second quartile (Median) of skewness among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
16.4
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of binary attributes.
0.29
Second quartile (Median) of standard deviation of attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
The maximum number of distinct values among attributes of the nominal type.
-2.44
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
2.15
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
-0.83
Third quartile of kurtosis among attributes of the numeric type.
0.51
Average class difference between consecutive instances.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
10189.37
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
99.39
Percentage of numeric attributes.
4.72
Third quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0.61
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
-1.09
Mean kurtosis among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
0.44
Third quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
207.56
Mean of means among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-1.93
First quartile of kurtosis among attributes of the numeric type.
0.66
Third quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
1.16
First quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Standard deviation of the number of distinct values among attributes of the nominal type.
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Average number of distinct values among the attributes of the nominal type.
-0.19
First quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.07
Mean skewness among attributes of the numeric type.
0.12
First quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Percentage of instances belonging to the most frequent class.
70.61
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Entropy of the target attribute values.
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-1.51
Second quartile (Median) of kurtosis among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
-2.41
Minimum kurtosis among attributes of the numeric type.
2.99
Second quartile (Median) of means among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
6.42
Maximum kurtosis among attributes of the numeric type.
-5.82
Minimum of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task