Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3028

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3028

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3028 (TID: 10857), and it has 71 rows and 51 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent FCFP 1024-bit Molecular Fingerprints which were generated from SMILES strings. Feature selection was applied to this dataset. The fingerprints were obtained using the Pipeline Pilot program, Dassault Systèmes BIOVIA. Generating Fingerprints do not usually require missing value imputation as all bits are generated.

53 features

pXC50 (target)numeric37 unique values
0 missing
molecule_id (row identifier)nominal71 unique values
0 missing
FCFP4_1024b139numeric2 unique values
0 missing
FCFP4_1024b161numeric2 unique values
0 missing
FCFP4_1024b185numeric2 unique values
0 missing
FCFP4_1024b351numeric2 unique values
0 missing
FCFP4_1024b376numeric2 unique values
0 missing
FCFP4_1024b437numeric2 unique values
0 missing
FCFP4_1024b507numeric2 unique values
0 missing
FCFP4_1024b56numeric2 unique values
0 missing
FCFP4_1024b625numeric2 unique values
0 missing
FCFP4_1024b635numeric2 unique values
0 missing
FCFP4_1024b65numeric2 unique values
0 missing
FCFP4_1024b678numeric2 unique values
0 missing
FCFP4_1024b944numeric2 unique values
0 missing
FCFP4_1024b984numeric2 unique values
0 missing
FCFP4_1024b657numeric2 unique values
0 missing
FCFP4_1024b412numeric2 unique values
0 missing
FCFP4_1024b553numeric2 unique values
0 missing
FCFP4_1024b787numeric2 unique values
0 missing
FCFP4_1024b137numeric2 unique values
0 missing
FCFP4_1024b521numeric2 unique values
0 missing
FCFP4_1024b685numeric2 unique values
0 missing
FCFP4_1024b804numeric2 unique values
0 missing
FCFP4_1024b826numeric2 unique values
0 missing
FCFP4_1024b933numeric2 unique values
0 missing
FCFP4_1024b971numeric2 unique values
0 missing
FCFP4_1024b153numeric2 unique values
0 missing
FCFP4_1024b310numeric2 unique values
0 missing
FCFP4_1024b25numeric2 unique values
0 missing
FCFP4_1024b87numeric2 unique values
0 missing
FCFP4_1024b17numeric2 unique values
0 missing
FCFP4_1024b170numeric2 unique values
0 missing
FCFP4_1024b130numeric2 unique values
0 missing
FCFP4_1024b455numeric2 unique values
0 missing
FCFP4_1024b483numeric2 unique values
0 missing
FCFP4_1024b557numeric2 unique values
0 missing
FCFP4_1024b575numeric2 unique values
0 missing
FCFP4_1024b668numeric2 unique values
0 missing
FCFP4_1024b692numeric2 unique values
0 missing
FCFP4_1024b206numeric2 unique values
0 missing
FCFP4_1024b10numeric2 unique values
0 missing
FCFP4_1024b37numeric2 unique values
0 missing
FCFP4_1024b630numeric2 unique values
0 missing
FCFP4_1024b644numeric2 unique values
0 missing
FCFP4_1024b325numeric2 unique values
0 missing
FCFP4_1024b316numeric2 unique values
0 missing
FCFP4_1024b583numeric2 unique values
0 missing
FCFP4_1024b876numeric2 unique values
0 missing
FCFP4_1024b395numeric2 unique values
0 missing
FCFP4_1024b669numeric2 unique values
0 missing
FCFP4_1024b1018numeric2 unique values
0 missing
FCFP4_1024b182numeric2 unique values
0 missing

107 properties

71
Number of instances (rows) of the dataset.
53
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
52
Number of numeric attributes.
1
Number of nominal attributes.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
-1.91
Minimum kurtosis among attributes of the numeric type.
0.79
Second quartile (Median) of means among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
7.53
Maximum kurtosis among attributes of the numeric type.
0.08
Minimum of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
8.01
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
-1.45
Second quartile (Median) of skewness among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.75
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of binary attributes.
0.41
Second quartile (Median) of standard deviation of attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
The maximum number of distinct values among attributes of the nominal type.
-2.29
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
3.05
Maximum skewness among attributes of the numeric type.
0.28
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
2.52
Third quartile of kurtosis among attributes of the numeric type.
0.48
Average class difference between consecutive instances.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
2.03
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
98.11
Percentage of numeric attributes.
0.82
Third quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.89
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
1.17
Mean kurtosis among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
-0.38
Third quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.78
Mean of means among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.09
First quartile of kurtosis among attributes of the numeric type.
0.41
Third quartile of standard deviation of attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.59
First quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Standard deviation of the number of distinct values among attributes of the nominal type.
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Average number of distinct values among the attributes of the nominal type.
-1.67
First quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
-0.61
Mean skewness among attributes of the numeric type.
0.35
First quartile of standard deviation of attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Percentage of instances belonging to the most frequent class.
0.42
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Entropy of the target attribute values.
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.26
Second quartile (Median) of kurtosis among attributes of the numeric type.

12 tasks

1 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task