Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3318

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL3318

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL3318 (TID: 100675), and it has 318 rows and 68 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

70 features

pXC50 (target)numeric244 unique values
0 missing
molecule_id (row identifier)nominal318 unique values
0 missing
P_VSA_MR_5numeric149 unique values
0 missing
Eta_sh_pnumeric167 unique values
0 missing
MATS2mnumeric183 unique values
0 missing
N.074numeric3 unique values
0 missing
H.047numeric26 unique values
0 missing
C.numeric104 unique values
0 missing
GNarnumeric127 unique values
0 missing
C.001numeric7 unique values
0 missing
GATS3mnumeric227 unique values
0 missing
NdsNnumeric3 unique values
0 missing
SdsNnumeric50 unique values
0 missing
SpMax4_Bh.s.numeric226 unique values
0 missing
GATS1snumeric228 unique values
0 missing
SpMax2_Bh.s.numeric148 unique values
0 missing
Eta_F_Anumeric264 unique values
0 missing
X5Avnumeric48 unique values
0 missing
N.numeric72 unique values
0 missing
MAXDPnumeric297 unique values
0 missing
SdssCnumeric235 unique values
0 missing
nNnumeric7 unique values
0 missing
NdOnumeric8 unique values
0 missing
Eig12_AEA.ed.numeric169 unique values
0 missing
nC.N.N.numeric3 unique values
0 missing
X0Avnumeric148 unique values
0 missing
SpMax5_Bh.s.numeric229 unique values
0 missing
CATS2D_02_DPnumeric3 unique values
0 missing
O.058numeric7 unique values
0 missing
Eig02_EA.ri.numeric249 unique values
0 missing
H.051numeric9 unique values
0 missing
CATS2D_01_DAnumeric3 unique values
0 missing
X0Anumeric79 unique values
0 missing
P_VSA_e_3numeric44 unique values
0 missing
P_VSA_i_4numeric50 unique values
0 missing
Eta_FLnumeric268 unique values
0 missing
Eig02_AEA.ed.numeric206 unique values
0 missing
H.numeric111 unique values
0 missing
Eta_beta_Anumeric191 unique values
0 missing
LOCnumeric168 unique values
0 missing
Eta_FL_Anumeric132 unique values
0 missing
C.005numeric5 unique values
0 missing
Eig05_AEA.bo.numeric221 unique values
0 missing
MAXDNnumeric284 unique values
0 missing
P_VSA_MR_6numeric179 unique values
0 missing
X3numeric252 unique values
0 missing
SdOnumeric170 unique values
0 missing
SpMax3_Bh.s.numeric168 unique values
0 missing
Mvnumeric129 unique values
0 missing
BLInumeric208 unique values
0 missing
MWC03numeric132 unique values
0 missing
ZM2numeric132 unique values
0 missing
X2Avnumeric113 unique values
0 missing
ZM1Kupnumeric266 unique values
0 missing
nCpnumeric7 unique values
0 missing
Eta_Fnumeric310 unique values
0 missing
P_VSA_LogP_3numeric60 unique values
0 missing
P_VSA_LogP_2numeric94 unique values
0 missing
SssNHnumeric127 unique values
0 missing
ATSC5snumeric312 unique values
0 missing
ZM2MulPernumeric295 unique values
0 missing
RDSQnumeric256 unique values
0 missing
X1Avnumeric127 unique values
0 missing
Eig08_AEA.ed.numeric200 unique values
0 missing
nCsp2numeric26 unique values
0 missing
SRW10numeric245 unique values
0 missing
SpAD_AEA.dm.numeric299 unique values
0 missing
Eta_betaSnumeric76 unique values
0 missing
SM02_EA.ri.numeric244 unique values
0 missing
Eig05_EA.ri.numeric236 unique values
0 missing

107 properties

318
Number of instances (rows) of the dataset.
70
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
69
Number of numeric attributes.
1
Number of nominal attributes.
0.39
First quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.97
Mean skewness among attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Percentage of instances belonging to the most frequent class.
11.64
Mean standard deviation of attributes of the numeric type.
1.64
Second quartile (Median) of kurtosis among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Entropy of the target attribute values.
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
2.52
Second quartile (Median) of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
-1.38
Minimum kurtosis among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
30.63
Maximum kurtosis among attributes of the numeric type.
-0.17
Minimum of means among attributes of the numeric type.
1
Second quartile (Median) of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
334.02
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0
Percentage of binary attributes.
1.02
Second quartile (Median) of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.22
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
The maximum number of distinct values among attributes of the nominal type.
-1.42
Minimum skewness among attributes of the numeric type.
0
Percentage of missing values.
3.67
Third quartile of kurtosis among attributes of the numeric type.
0.23
Average class difference between consecutive instances.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
4.64
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
98.57
Percentage of numeric attributes.
11.03
Third quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
158.36
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
Number of instances belonging to the least frequent class.
1.43
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
1.79
Third quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
2.86
Mean kurtosis among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-0.06
First quartile of kurtosis among attributes of the numeric type.
5.93
Third quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
21.56
Mean of means among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.69
First quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0.12
First quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Standard deviation of the number of distinct values among attributes of the nominal type.
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Average number of distinct values among the attributes of the nominal type.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task