Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5351

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL5351

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL5351 (TID: 101163), and it has 77 rows and 59 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

61 features

pXC50 (target)numeric65 unique values
0 missing
molecule_id (row identifier)nominal77 unique values
0 missing
Eig02_EA.dm.numeric22 unique values
0 missing
Eig02_AEA.dm.numeric35 unique values
0 missing
Eig01_AEA.bo.numeric29 unique values
0 missing
SpMax_AEA.bo.numeric29 unique values
0 missing
SpAD_EA.dm.numeric27 unique values
0 missing
SM03_EA.dm.numeric14 unique values
0 missing
SM05_EA.dm.numeric19 unique values
0 missing
SM07_EA.dm.numeric19 unique values
0 missing
SM09_EA.dm.numeric18 unique values
0 missing
SpDiam_AEA.bo.numeric63 unique values
0 missing
SM02_EA.dm.numeric27 unique values
0 missing
Eig01_AEA.ed.numeric23 unique values
0 missing
Eig01_EAnumeric26 unique values
0 missing
Eig01_EA.ed.numeric26 unique values
0 missing
SM09_AEA.bo.numeric26 unique values
0 missing
SM10_AEA.dm.numeric26 unique values
0 missing
SpDiam_AEA.ed.numeric62 unique values
0 missing
SpDiam_EAnumeric40 unique values
0 missing
SpDiam_EA.ed.numeric29 unique values
0 missing
SpMax_AEA.ed.numeric23 unique values
0 missing
SpMax_EAnumeric26 unique values
0 missing
SpMax_EA.ed.numeric26 unique values
0 missing
SM06_EA.dm.numeric26 unique values
0 missing
SM08_EA.dm.numeric25 unique values
0 missing
SM11_EA.dm.numeric18 unique values
0 missing
SM13_EA.dm.numeric17 unique values
0 missing
SM15_EA.dm.numeric16 unique values
0 missing
SM04_EA.dm.numeric27 unique values
0 missing
SM10_EA.dm.numeric25 unique values
0 missing
SM12_EA.dm.numeric24 unique values
0 missing
SM14_EA.dm.numeric23 unique values
0 missing
Eig01_AEA.ri.numeric36 unique values
0 missing
SM11_EA.ed.numeric29 unique values
0 missing
SM12_EA.ed.numeric30 unique values
0 missing
SM13_EA.ed.numeric29 unique values
0 missing
SM14_EA.ed.numeric29 unique values
0 missing
SM15_EA.ed.numeric28 unique values
0 missing
SpMax_AEA.ri.numeric36 unique values
0 missing
Eig01_EA.dm.numeric17 unique values
0 missing
SpDiam_EA.dm.numeric21 unique values
0 missing
SpMax_EA.dm.numeric17 unique values
0 missing
SM05_EA.ed.numeric27 unique values
0 missing
SM06_EA.ed.numeric59 unique values
0 missing
SM07_EA.ed.numeric27 unique values
0 missing
SM08_EA.ed.numeric43 unique values
0 missing
SM09_EA.ed.numeric28 unique values
0 missing
SM10_EA.ed.numeric29 unique values
0 missing
SM12_AEA.ed.numeric50 unique values
0 missing
SM13_AEA.ed.numeric45 unique values
0 missing
SM13_EAnumeric30 unique values
0 missing
SM14_AEA.ed.numeric37 unique values
0 missing
SM14_EAnumeric52 unique values
0 missing
SM15_AEA.ed.numeric37 unique values
0 missing
SM15_EAnumeric31 unique values
0 missing
Eig03_EA.dm.numeric19 unique values
0 missing
C.040numeric3 unique values
0 missing
SpMAD_EA.dm.numeric58 unique values
0 missing
CATS2D_02_ALnumeric6 unique values
0 missing
P_VSA_MR_7numeric14 unique values
0 missing

107 properties

77
Number of instances (rows) of the dataset.
61
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
60
Number of numeric attributes.
1
Number of nominal attributes.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
35.02
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0.31
Second quartile (Median) of skewness among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.79
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of binary attributes.
1.12
Second quartile (Median) of standard deviation of attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
The maximum number of distinct values among attributes of the nominal type.
-0.24
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
2.63
Maximum skewness among attributes of the numeric type.
0.19
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
0.2
Third quartile of kurtosis among attributes of the numeric type.
0.36
Average class difference between consecutive instances.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
46.98
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
98.36
Percentage of numeric attributes.
16.82
Third quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.64
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
-0.22
Mean kurtosis among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
0.47
Third quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
10.68
Mean of means among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-1.02
First quartile of kurtosis among attributes of the numeric type.
1.96
Third quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
3.3
First quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Standard deviation of the number of distinct values among attributes of the nominal type.
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Average number of distinct values among the attributes of the nominal type.
0.15
First quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.39
Mean skewness among attributes of the numeric type.
0.59
First quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Percentage of instances belonging to the most frequent class.
2.47
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Entropy of the target attribute values.
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.34
Second quartile (Median) of kurtosis among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
-1.62
Minimum kurtosis among attributes of the numeric type.
6.63
Second quartile (Median) of means among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
7.06
Maximum kurtosis among attributes of the numeric type.
0.34
Minimum of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task