Data
QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2725

QSAR-DATASET-FOR-DRUG-TARGET-CHEMBL2725

deactivated ARFF Publicly available Visibility: public Uploaded 14-07-2016 by Noureddin Sadawi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
This dataset contains QSAR data (from ChEMBL version 17) showing activity values (unit is pseudo-pCI50) of several compounds on drug target ChEMBL_ID: CHEMBL2725 (TID: 12802), and it has 218 rows and 69 features (not including molecule IDs and class feature: molecule_id and pXC50). The features represent Molecular Descriptors which were generated from SMILES strings. Missing value imputation was applied to this dataset (By choosing the Median). Feature selection was also applied.

71 features

pXC50 (target)numeric167 unique values
0 missing
molecule_id (row identifier)nominal218 unique values
0 missing
C.028numeric2 unique values
0 missing
piPC10numeric149 unique values
0 missing
NaaNnumeric3 unique values
0 missing
SaaNnumeric54 unique values
0 missing
CATS2D_05_NLnumeric4 unique values
0 missing
piPC08numeric145 unique values
0 missing
N.075numeric3 unique values
0 missing
piPC09numeric144 unique values
0 missing
PDInumeric109 unique values
0 missing
GATS6snumeric177 unique values
0 missing
piPC06numeric145 unique values
0 missing
piPC07numeric147 unique values
0 missing
nCconjnumeric10 unique values
0 missing
piPC04numeric135 unique values
0 missing
IC1numeric162 unique values
0 missing
SIC3numeric110 unique values
0 missing
Eig02_AEA.bo.numeric115 unique values
0 missing
piPC03numeric117 unique values
0 missing
SM03_EA.dm.numeric44 unique values
0 missing
Eig02_EA.bo.numeric129 unique values
0 missing
SM12_AEA.ri.numeric129 unique values
0 missing
C.018numeric2 unique values
0 missing
CIC4numeric134 unique values
0 missing
CIC3numeric143 unique values
0 missing
SIC4numeric98 unique values
0 missing
SIC5numeric96 unique values
0 missing
MATS7pnumeric144 unique values
0 missing
SIC1numeric131 unique values
0 missing
SM15_EA.bo.numeric147 unique values
0 missing
SM13_EA.bo.numeric148 unique values
0 missing
SM14_EA.bo.numeric146 unique values
0 missing
CIC5numeric136 unique values
0 missing
MATS6snumeric166 unique values
0 missing
SM09_EA.bo.numeric152 unique values
0 missing
GATS1vnumeric135 unique values
0 missing
Eig02_EAnumeric124 unique values
0 missing
SM10_AEA.bo.numeric124 unique values
0 missing
GATS3pnumeric162 unique values
0 missing
SM12_EA.bo.numeric146 unique values
0 missing
nRCOORnumeric3 unique values
0 missing
SM10_EA.bo.numeric152 unique values
0 missing
SM15_EA.dm.numeric66 unique values
0 missing
SM11_EA.bo.numeric147 unique values
0 missing
BIC1numeric123 unique values
0 missing
SM11_EA.ri.numeric177 unique values
0 missing
SM12_EA.ri.numeric182 unique values
0 missing
GATS7pnumeric155 unique values
0 missing
Eig01_AEA.ed.numeric74 unique values
0 missing
SpMax_AEA.ed.numeric74 unique values
0 missing
D.Dtr09numeric35 unique values
0 missing
SM05_EA.ri.numeric168 unique values
0 missing
SM08_EA.ri.numeric182 unique values
0 missing
GATS3vnumeric132 unique values
0 missing
X3Anumeric57 unique values
0 missing
MATS6enumeric170 unique values
0 missing
Mvnumeric103 unique values
0 missing
SM08_AEA.bo.numeric157 unique values
0 missing
Eig01_EAnumeric83 unique values
0 missing
Eig01_EA.ed.numeric88 unique values
0 missing
SM09_AEA.bo.numeric83 unique values
0 missing
SM09_EA.ed.numeric130 unique values
0 missing
SM10_AEA.dm.numeric88 unique values
0 missing
SM10_EA.ed.numeric129 unique values
0 missing
SM11_EA.ed.numeric129 unique values
0 missing
SM12_EA.ed.numeric122 unique values
0 missing
SM13_EA.ed.numeric127 unique values
0 missing
SM14_EA.ed.numeric127 unique values
0 missing
SM15_EA.ed.numeric122 unique values
0 missing
SpDiam_EAnumeric83 unique values
0 missing

107 properties

218
Number of instances (rows) of the dataset.
71
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
70
Number of numeric attributes.
1
Number of nominal attributes.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
38.08
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
-0.03
Second quartile (Median) of skewness among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.33
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of binary attributes.
0.51
Second quartile (Median) of standard deviation of attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
The maximum number of distinct values among attributes of the nominal type.
-1.64
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
3.62
Maximum skewness among attributes of the numeric type.
0.02
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
1.15
Third quartile of kurtosis among attributes of the numeric type.
-0.06
Average class difference between consecutive instances.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
48.21
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
98.59
Percentage of numeric attributes.
13.2
Third quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
1.41
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.88
Mean kurtosis among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
0.66
Third quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
8.12
Mean of means among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-0.38
First quartile of kurtosis among attributes of the numeric type.
1.22
Third quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.91
First quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Standard deviation of the number of distinct values among attributes of the nominal type.
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Average number of distinct values among the attributes of the nominal type.
-0.21
First quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.23
Mean skewness among attributes of the numeric type.
0.23
First quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Percentage of instances belonging to the most frequent class.
1.56
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Entropy of the target attribute values.
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.31
Second quartile (Median) of kurtosis among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
-1.21
Minimum kurtosis among attributes of the numeric type.
3.99
Second quartile (Median) of means among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
19.5
Maximum kurtosis among attributes of the numeric type.
-0.05
Minimum of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.

12 tasks

2 runs - estimation_procedure: Custom 10-fold Crossvalidation - target_feature: pXC50
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task