Data
autoUniv-au7-1100

autoUniv-au7-1100

active ARFF Publicly available Visibility: public Uploaded 01-06-2015 by Rafael Gomes Mantovani
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • artificial Data Science Information Technology Machine Learning study_144 study_34 study_50 study_52 study_7
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Ray. J. Hickey Source: UCI Please cite: * Dataset Title: AutoUniv Dataset data problem: autoUniv-au7-300-drift-au7-cpd1-800 * Abstract: AutoUniv is an advanced data generator for classifications tasks. The aim is to reflect the nuances and heterogeneity of real data. Data can be generated in .csv, ARFF or C4.5 formats. * Source: AutoUniv was developed by Ray. J. Hickey. Email: ray.j.hickey '@' gmail.com AutoUniv web-site: http://sites.google.com/site/autouniv/. * Data Set Information: The user first creates a classification model and then generates classified examples from it. To create a model, the following are specified: the number of attributes (up to 1000) and their type (discrete or continuous), the number of classes (up to 10), the complexity of the underlying rules and the noise level. AutoUniv then produces a model through a process of constrained randomised search to satisfy the user's requirements. A model can have up to 3000 rules. Rare class models can be designed. A sequence of models can be designed to reflect concept and/or population drift. AutoUniv creates three text files for a model: a Prolog specification of the model used to generate examples (.aupl); a user-friendly statement of the classification rules in an 'if ... then' format (.aurules); a statistical summary of the main properties of the model, including its Bayes rate (.auprops). * Attribute Information: Attributes may be discrete with up to 10 values or continuous. A discrete attribute can be nominal with values v1, v2, v3 ... or integer with values 0, 1, 2 , ... . * Relevant Papers: Marrs, G, Hickey, RJ and Black, MM (2010) Modeling the example life-cycle in an online classification learner. In Proceedings of HaCDAIS 2010: International Workshop on Handling Concept Drift in Adaptive Information Systems. [Web Link]#proc . Marrs, G, Hickey, RJ and Black, MM (2010) The Impact of Latency on Online Classification Learning with Concept Drift. In Y. Bi and M.A. Williams (Eds.): KSEM 2010, LNAI 6291, Springer-Verlag, Berlin, pp. 459–469. Hickey, RJ (2007) Structure and Majority Classes in Decision Tree Learning. Journal of Machine Learning Research, 8, pp. 1747-1768.

13 features

Class (target)nominal5 unique values
0 missing
V1numeric423 unique values
0 missing
V2numeric360 unique values
0 missing
V3numeric55 unique values
0 missing
V4numeric3 unique values
0 missing
V5nominal2 unique values
0 missing
V6nominal2 unique values
0 missing
V7numeric843 unique values
0 missing
V8nominal3 unique values
0 missing
V9numeric3 unique values
0 missing
V10nominal3 unique values
0 missing
V11numeric153 unique values
0 missing
V12numeric3 unique values
0 missing

107 properties

1100
Number of instances (rows) of the dataset.
13
Number of attributes (columns) of the dataset.
5
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
8
Number of numeric attributes.
5
Number of nominal attributes.
0.24
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.6
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
1.22
Standard deviation of the number of distinct values among attributes of the nominal type.
0.66
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
3
Average number of distinct values among the attributes of the nominal type.
0.02
First quartile of skewness among attributes of the numeric type.
0.68
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.69
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.56
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.16
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.06
Mean skewness among attributes of the numeric type.
0.55
First quartile of standard deviation of attributes of the numeric type.
0.59
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.1
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.7
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
27.73
Percentage of instances belonging to the most frequent class.
210.24
Mean standard deviation of attributes of the numeric type.
1.07
Second quartile (Median) of entropy among attributes.
0.24
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
2.28
Entropy of the target attribute values.
0.12
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
305
Number of instances belonging to the most frequent class.
0.96
Minimal entropy among attributes.
-1.42
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.68
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.59
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
1.54
Maximum entropy among attributes.
-1.57
Minimum kurtosis among attributes of the numeric type.
1.1
Second quartile (Median) of means among attributes of the numeric type.
0.59
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.7
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
-1
Maximum kurtosis among attributes of the numeric type.
0.38
Minimum of means among attributes of the numeric type.
0.06
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.07
Second quartile (Median) of skewness among attributes of the numeric type.
0.24
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.06
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
5201.51
Maximum of means among attributes of the numeric type.
0.01
Minimal mutual information between the nominal attributes and the target attribute.
0.8
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.57
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.01
Number of attributes divided by the number of instances.
0.08
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
15.38
Percentage of binary attributes.
1.44
Third quartile of entropy among attributes.
0.68
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
44.39
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
5
The maximum number of distinct values among attributes of the nominal type.
-0.35
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
-1.27
Third quartile of kurtosis among attributes of the numeric type.
0.27
Average class difference between consecutive instances.
0.13
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.6
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.35
Maximum skewness among attributes of the numeric type.
0.17
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
2462.58
Third quartile of means among attributes of the numeric type.
0.6
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.57
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.66
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
1489.75
Maximum standard deviation of attributes of the numeric type.
13.91
Percentage of instances belonging to the least frequent class.
61.54
Percentage of numeric attributes.
0.08
Third quartile of mutual information between the nominal attributes and the target attribute.
0.69
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.68
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.16
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
1.16
Average entropy of the attributes.
153
Number of instances belonging to the least frequent class.
38.46
Percentage of nominal attributes.
0.16
Third quartile of skewness among attributes of the numeric type.
0.1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.13
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.6
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
-1.38
Mean kurtosis among attributes of the numeric type.
0.65
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.97
First quartile of entropy among attributes.
140.71
Third quartile of standard deviation of attributes of the numeric type.
0.6
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.57
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.66
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
1061.53
Mean of means among attributes of the numeric type.
0.66
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-1.54
First quartile of kurtosis among attributes of the numeric type.
0.68
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.69
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.68
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.16
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.05
Average mutual information between the nominal attributes and the target attribute.
0.15
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.92
First quartile of means among attributes of the numeric type.
0.59
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.1
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.13
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.6
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
21.57
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
2
Number of binary attributes.
0.02
First quartile of mutual information between the nominal attributes and the target attribute.

35 tasks

563 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: Class
32 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: 33% Holdout set - evaluation_measure: predictive_accuracy - target_feature: Class
44 runs - estimation_procedure: 10-fold Learning Curve - target_feature: Class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
1300 runs - target_feature: Class
1299 runs - target_feature: Class
1298 runs - target_feature: Class
1298 runs - target_feature: Class
1296 runs - target_feature: Class
0 runs - target_feature: Class
0 runs - target_feature: Class
0 runs - target_feature: Class
0 runs - target_feature: Class
0 runs - target_feature: Class
0 runs - target_feature: Class
0 runs - target_feature: Class
0 runs - target_feature: Class
0 runs - target_feature: Class
0 runs - target_feature: Class
0 runs - target_feature: Class
0 runs - target_feature: Class
0 runs - target_feature: Class
0 runs - target_feature: Class
0 runs - target_feature: Class
Define a new task