Data
robot-failures-lp5

robot-failures-lp5

active ARFF Publicly available Visibility: public Uploaded 01-06-2015 by Rafael Gomes Mantovani
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • Data Science mf_less_than_80 study_123 study_52 study_7 study_88
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Luis Seabra Lope, Luis M. Camarinha-Matos Source: UCI Please cite: * Dataset Title: Robot Execution Failures Data Set * Abstract: This dataset contains force and torque measurements on a robot after failure detection. Each failure is characterized by 15 force/torque samples collected at regular time intervals * Source: Original Owner and Donor Luis Seabra Lopes and Luis M. Camarinha-Matos, Universidade Nova de Lisboa, Monte da Caparica, Portugal * Data Set Information: The donation includes 5 datasets, each of them defining a different learning problem: * LP1: failures in approach to grasp position * LP2: failures in transfer of a part * LP3: position of part after a transfer failure * LP4: failures in approach to ungrasp position * LP5 (This dataset): failures in motion with part In order to improve classification accuracy, a set of five feature transformation strategies (based on statistical summary features, discrete Fourier transform, etc.) was defined and evaluated. This enabled an average improvement of 20% in accuracy. The most accessible reference is [Seabra Lopes and Camarinha-Matos, 1998]. * Attribute Information: All features are numeric although they are integer valued only. Each feature represents a force or a torque measured after failure detection; each failure instance is characterized in terms of 15 force/torque samples collected at regular time intervals starting immediately after failure detection; The total observation window for each failure instance was of 315 ms. Each example is described as follows: class Fx1 Fy1 Fz1 Tx1 Ty1 Tz1 Fx2 Fy2 Fz2 Tx2 Ty2 Tz2 ...... Fx15 Fy15 Fz15 Tx15 Ty15 Tz15 where Fx1 ... Fx15 is the evolution of force Fx in the observation window, the same for Fy, Fz and the torques; there is a total of 90 features. * Relevant Papers: Seabra Lopes, L. (1997) "Robot Learning at the Task Level: a Study in the Assembly Domain", Ph.D. thesis, Universidade Nova de Lisboa, Portugal. Seabra Lopes, L. and L.M. Camarinha-Matos (1998) Feature Transformation Strategies for a Robot Learning Problem, "Feature Extraction, Construction and Selection. A Data Mining Perspective", H. Liu and H. Motoda (edrs.), Kluwer Academic Publishers. Camarinha-Matos, L.M., L. Seabra Lopes, and J. Barata (1996) Integration and Learning in Supervision of Flexible Assembly Systems, "IEEE Transactions on Robotics and Automation", 12 (2), 202-219.

91 features

Class (target)nominal5 unique values
0 missing
V1numeric76 unique values
0 missing
V2numeric63 unique values
0 missing
V3numeric98 unique values
0 missing
V4numeric83 unique values
0 missing
V5numeric87 unique values
0 missing
V6numeric49 unique values
0 missing
V7numeric77 unique values
0 missing
V8numeric60 unique values
0 missing
V9numeric90 unique values
0 missing
V10numeric75 unique values
0 missing
V11numeric92 unique values
0 missing
V12numeric44 unique values
0 missing
V13numeric71 unique values
0 missing
V14numeric62 unique values
0 missing
V15numeric91 unique values
0 missing
V16numeric72 unique values
0 missing
V17numeric89 unique values
0 missing
V18numeric38 unique values
0 missing
V19numeric60 unique values
0 missing
V20numeric54 unique values
0 missing
V21numeric90 unique values
0 missing
V22numeric71 unique values
0 missing
V23numeric79 unique values
0 missing
V24numeric36 unique values
0 missing
V25numeric62 unique values
0 missing
V26numeric54 unique values
0 missing
V27numeric88 unique values
0 missing
V28numeric67 unique values
0 missing
V29numeric73 unique values
0 missing
V30numeric34 unique values
0 missing
V31numeric55 unique values
0 missing
V32numeric45 unique values
0 missing
V33numeric92 unique values
0 missing
V34numeric60 unique values
0 missing
V35numeric71 unique values
0 missing
V36numeric35 unique values
0 missing
V37numeric52 unique values
0 missing
V38numeric43 unique values
0 missing
V39numeric86 unique values
0 missing
V40numeric62 unique values
0 missing
V41numeric71 unique values
0 missing
V42numeric35 unique values
0 missing
V43numeric46 unique values
0 missing
V44numeric36 unique values
0 missing
V45numeric84 unique values
0 missing
V46numeric54 unique values
0 missing
V47numeric66 unique values
0 missing
V48numeric30 unique values
0 missing
V49numeric45 unique values
0 missing
V50numeric37 unique values
0 missing
V51numeric82 unique values
0 missing
V52numeric62 unique values
0 missing
V53numeric67 unique values
0 missing
V54numeric36 unique values
0 missing
V55numeric45 unique values
0 missing
V56numeric41 unique values
0 missing
V57numeric83 unique values
0 missing
V58numeric65 unique values
0 missing
V59numeric66 unique values
0 missing
V60numeric31 unique values
0 missing
V61numeric45 unique values
0 missing
V62numeric44 unique values
0 missing
V63numeric91 unique values
0 missing
V64numeric63 unique values
0 missing
V65numeric68 unique values
0 missing
V66numeric35 unique values
0 missing
V67numeric50 unique values
0 missing
V68numeric45 unique values
0 missing
V69numeric91 unique values
0 missing
V70numeric63 unique values
0 missing
V71numeric71 unique values
0 missing
V72numeric39 unique values
0 missing
V73numeric44 unique values
0 missing
V74numeric41 unique values
0 missing
V75numeric86 unique values
0 missing
V76numeric62 unique values
0 missing
V77numeric65 unique values
0 missing
V78numeric37 unique values
0 missing
V79numeric42 unique values
0 missing
V80numeric37 unique values
0 missing
V81numeric93 unique values
0 missing
V82numeric57 unique values
0 missing
V83numeric60 unique values
0 missing
V84numeric37 unique values
0 missing
V85numeric40 unique values
0 missing
V86numeric43 unique values
0 missing
V87numeric90 unique values
0 missing
V88numeric62 unique values
0 missing
V89numeric64 unique values
0 missing
V90numeric33 unique values
0 missing

107 properties

164
Number of instances (rows) of the dataset.
91
Number of attributes (columns) of the dataset.
5
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
90
Number of numeric attributes.
1
Number of nominal attributes.
0.31
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.7
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.47
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
5
Average number of distinct values among the attributes of the nominal type.
-4.43
First quartile of skewness among attributes of the numeric type.
0.73
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.52
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.69
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.39
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
-1.45
Mean skewness among attributes of the numeric type.
35.93
First quartile of standard deviation of attributes of the numeric type.
0.54
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.32
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.47
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
28.66
Percentage of instances belonging to the most frequent class.
125.84
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.31
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
2.25
Entropy of the target attribute values.
0.39
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
47
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
29.59
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.73
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.68
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
3.66
Minimum kurtosis among attributes of the numeric type.
-3.78
Second quartile (Median) of means among attributes of the numeric type.
0.54
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.65
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
80.84
Maximum kurtosis among attributes of the numeric type.
-170.39
Minimum of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
-2.46
Second quartile (Median) of skewness among attributes of the numeric type.
0.31
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.13
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
7.26
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
56.95
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.71
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.55
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
5
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of binary attributes.
Third quartile of entropy among attributes.
0.46
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
5
The maximum number of distinct values among attributes of the nominal type.
-7.46
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
42.82
Third quartile of kurtosis among attributes of the numeric type.
0.79
Average class difference between consecutive instances.
0.41
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.69
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
7.46
Maximum skewness among attributes of the numeric type.
10.43
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
-0.95
Third quartile of means among attributes of the numeric type.
0.7
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.71
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.47
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
665.28
Maximum standard deviation of attributes of the numeric type.
12.8
Percentage of instances belonging to the least frequent class.
98.9
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.52
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.46
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.39
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
21
Number of instances belonging to the least frequent class.
1.1
Percentage of nominal attributes.
2.26
Third quartile of skewness among attributes of the numeric type.
0.32
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.41
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.69
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
33.19
Mean kurtosis among attributes of the numeric type.
0.84
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
85.26
Third quartile of standard deviation of attributes of the numeric type.
0.7
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.71
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.47
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
-17.65
Mean of means among attributes of the numeric type.
0.37
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
21.94
First quartile of kurtosis among attributes of the numeric type.
0.73
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.52
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.46
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.39
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
0.54
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-8.13
First quartile of means among attributes of the numeric type.
0.54
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.32
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.41
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.69
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.

13 tasks

98 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: Class
32 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task